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ABSTRACT

To reuse the enormous amounts of biomedical data available on the Web, there is an urgent need
for good quality metadata. This is extremely important to ensure that data is maximally Findable,
Accessible, Interoperable and Reusable. The Gene Expression Omnibus (GEO) allows users to
specify metadata in the form of textual key: value pairs (e.g. sex: female). However, since there is
no structured vocabulary or format available, the 44,000,000+ key: value pairs suffer from numerous
quality issues. Using domain experts for the curation is not only time consuming but also does not
scale. Thus, in our approach, MetaCrowd, we apply crowdsourcing as a means for GEO metadata
quality assessment. Our results show that crowdsourcing is a reliable way to identify similar as well
as erroneous metadata in GEO. This is extremely useful for data consumers and producers to curate
and provide good quality metadata.

1. INTRODUCTION

Advancements in molecular technologies have enabled extensive profiling of biological samples,
resulting in massive amounts of data that can be analyzed to better understand living systems. In-
creasingly, journals, funding agencies, and investigators all realize the value that these data have
to reproduce published findings, validate their own results, and generate new and interesting hy-
potheses (Barrett et al., 2013b). However, being able to find, interpret, evaluate, and reuse relevant
datasets remains a substantial challenge. Consider the work from Khatri and colleagues (Kha-
tri et al., 2013), who used publicly available expression data from the Gene Expression Omnibus
(GEO) (Edgar et al., 2002; Barrett et al., 2013a) to identify gene signatures that were predictive for
tissue graft rejection. Their work required them to search for and tediously curate important sample
characteristics (organism, tissue, protocol, etc) for deposited samples. This documentation, other-
wise known as metadata, helps investigators understand the meaning and provenance of the data
(Borgman, 2012). Ambiguous, incomplete, imprecise metadata makes it difficult to find datasets

http://dx.doi.org/10.15346/hc.v6i1.6
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that meet particular criteria and will make it impossible interpret the data elements or the context by
which the data were generated.

As of May 2017, the GEO database contained 84,220 study records (also known as Series) sub-
mitted by over 3,000 laboratories, comprising of 2,066,179 sample records (Sample) derived from
over 1600 organisms and 17,214 Platforms1. A Sample2 describes the conditions under which
a particular biological sample was handled, the manipulations it underwent, and their abundance.
A Series groups together related Samples and provides a focal point and description of the whole
study. Gene expression profiling data are typically produced on a small scale, in targeted studies that
vary in terms of tissue or cell type, disease model, expression assay platform and model organism.
Data submitters can submit data to GEO via three ways: (i) spreadsheets, (ii) SOFT format (plain
text), (iii) MINiML format3 (XML). When users submit data to GEO via a spreadsheet, it requires
them to fill out a metadata template that follows the guidelines set out by the Minimum Information
About a Microarray Experiment (MIAME) guidelines (Brazma et al., 2011). The metadata tem-
plate includes fields for title, summary, overall design, contributors, the protocols as well as sample
characteristics (e.g. sex, organism, tissue, cell type), but does not refer to a standardized vocabulary
for these fields. After submission, a curator checks the content and validity of the information pro-
vided (Barrett et al., 2011), and will work with the submitter until all issues are resolved. However,
the problem is that the submitter-supplied data is heterogeneous in the style, content and level of
detail with which the experiments are described (Soboleva et al., 2008).

While domain experts are well suited to address this problem of curating metadata, they are both
expensive and in short supply, and cannot easily cope with the growing amount of new knowl-
edge. One approach to this problem is crowdsourcing, in which non-experts are recruited to execute
simplied tasks. Human Intelligent Tasks (HITs) are submitted to a crowdsourcing platform (e.g.
Amazon Mechanical Turk4, Figure Eight5 etc.) for a worker (non-expert) to perform and to obtain
a (financial) reward (Howe, 2006). The ability to execute these tasks depend more on basic under-
standing of what is being asked rather than any specific skills (such as domain knowledge). One
advantage of crowdsourcing is the degree of task parallelization such that the work can be divided
and completed in shorter periods of time. However, a key part of crowdsourcing is to obtain con-
sensus from multiple provided answers. This makes solving the tasks time as well as cost efficient
and also offers a means to cross-check the accuracy of the answers (by assigning each task to more
than one person).

Crowdsourcing has been used for entity linking or resolution (Demartini et al., 2012; Guoliang,
2017), quality assurance and resource management (Wang et al., 2012) and for enhancement of
ontology alignments (Sarasua et al., 2012). Crowdsourcing has been previously used to assess the
quality of Linked Data with domain experts (Zaveri et al., 2013) as well as with workers from
Amazon Mechanical Turk (Acosta et al., 2013). Others have used crowdsourcing to annotate and
extract gene expression signatures from GEO (Wang et al., 2016), to improve automated mining of
biomedical text for annotating diseases (Good et al., 2015), to cureate gene-variant relations (Burger

1Derived from https://www.ncbi.nlm.nih.gov/geo/, last accessed May 2017.
2https://www.ncbi.nlm.nih.gov/geo/info/overview.html
3‘MIAME Notation in Markup Language’ format
4http://mturk.com
5https://figure-eight.com

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/info/overview.html
http://mturk.com
https://figure-eight.com
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et al., 2014), to identify drug side-effects (Gottlieb et al., 2015), drug indications (Khare et al.,
2015), as well microRNA functions (Vergoulis et al., 2015). These efforts are significant as they
focus on applying crowdsourcing to biomedically relevant problems, with workers who do not have
domain expertise. These studies produce large collections of high-quality datasets that can be further
utilized by algorithms that can extract new knowledge from already-published data that require
better annotation, cleaning and reprocessing. Another study (Hadley et al., 2017) employed 72
users that used 731 tags to make 40,361 annotations of digital experiments representing 2,835,037
annotations of digital samples. However, the 72 users were biomedical graduate students and it took
them over a year to provide the annotations. This makes the annotation difficult to maintain on a
large scale and for a long time. Additionally, it can get expensive and time consuming to have them
continuously annotating the Samples. Thus, with our project, we aim to propose a more efficient
and inexpensive method for curating biomedical metadata. To the best of our knowledge, there have
been no efforts in applying paid microtask crowdsourcing to curate the quality of gene expression
metadata, which is the main aim of this paper.

2. MAIN CONTRIBUTIONS

We explore the following research questions:

– RQ1: What is the performance, in terms of time, money and accuracy, of the crowd on gene
expression quality assessment? We will execute crowdsourcing microtasks for categorization of
different gene expression metadata key types. We will evaluate the performance by calculating
the amount of time the workers took for the task, the overall cost as well as accuracy, specifically
in terms of sensitivity and specificity.

– RQ2: Are there differences in the performance of the crowd on different gene expression meta-
data? We will select keys from different categories of gene expression metadata for the crowd-
sourcing tasks. We will compare and evaluate the results based on how accurately the workers
are able to identify the category correctly for each key type.

The main contributions of this paper are as follows:

– The development of MetaCrowd, a crowdsourcing platform for metadata quality assessment.
– Empirical analysis of crowdsourcing quality assessment of gene expression metadata.
– Qualitative analysis of a set of gene expression characteristics from the GEO.
– Analysis of the results, lessons learned, and implications of using MetaCrowd for large-scale

biomedical metadata quality assessment.

3. METHODOLOGY

In the crowdsourcing experiment, the main aim is to ask the crowd to classify a metadata key into
one of the provided categories. In particular, the worker has to choose one of the eight provided
categories for a given metadata key. Additional information such as five example values of that key
along with definitions of the categories are also provided so as to help the worker choose the right
category. This classification would help determine (i) lexical and conceptually similar keys that are
grouped into the same category (e.g. age and age(months)), (ii) lexically different but conceptually
similar keys that are grouped into the same category (e.g. disease and illness) and (iii) outliers,
those that do not fit into any category that are potentially flagged as erroneous (e.g. healthy control).
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In this section, we first describe the GEO metadata elements used in our experiments, followed by
details of the methodology and design of the crowdsourcing experiment.

3.1. GEO Metadata

In this work, we focused on experimental metadata from GEO, in particular on ‘Sample’ records. A
Sample record describes the conditions under which an individual Sample was handled, the manip-
ulations it underwent, and the abundance measurement of each element derived from it. From the
different metadata elements in a Sample6, we chose the ‘Characteristics’ metadata, which contains
information about the tissue, age, gender, cell type, disease etc. of the study. We chose this field as
it is represented in a key: value pair format as opposed to the free text format of the other fields.
For example, the sample GSM5493267 consists of several key: value pairs as depicted in Figure 1.
While GSM549326 contains information of the disease in the form illness: Still, one of the
other Samples GSM550400 captures the same disease information such as healthy control: pSLE.
The term ‘healthy control’ as a ‘key’ illustrates a data quality of inconsistency in the representation
of health status (healthy, diseased) for a Sample.

The key: value pairs are not uniformly captured due to the lack of standard set of terms provided
during submitting the metadata. The problems in the keys range from

– spelling errors (e.g. age at diagonosis (years); genotype/varat, genotype/varation
genotype/variataion, genotype/variation)

– syntactic variance (e.g. age (years), age(yrs) and age_year)
– synonyms (e.g. disease vs. illness vs. healthy control)
– multi-category terms (e.g. disease/cell type, tissue/cell line, treatment age)

Moreover, the values for these keys are problematic themselves from

– not being consistent (e.g. time of treatment key values: after disease establishment, zt24,
zt36, 6h, time of grafting - denoting heterogeneous representations of time points)

– also suffering from the minor spelling discrepancies (genotype key values: wild type, wt, wild-
type, wildtype)

– lacking semantics such as units for the values (e.g. age at presentation key values: 72, 50,
70, 69, 66) or (iv) being ambiguous (e.g. dopamine-agonists treatment key values: no, -,
yes).

Sample records contain the precise metadata by which other biologists can look-up and find studies
related to their own experiments, thus enabling re-use. When one attempts to find similar studies
by querying the metadata using keywords (as available by the GEO website), all the related studies
are not retrieved resulting in loss of important information. Thus, as a first step, we chose the
GEO Samples to identify and resolve such quality issues in the keys of the millions of GEO Sample
records. Resolving quality issues for the values and then the key: value pairs is part of the future
work.

6https://www.ncbi.nlm.nih.gov/geo/info/spreadsheet.html
7https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM549326, last accessed April 2017

https://www.ncbi.nlm.nih.gov/geo/info/spreadsheet.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM549326
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Figure 1. Example of the GEO Sample.

To retrieve the relevant metadata, we executed a SPARQL query over an Resource Description
Framework (RDF)8 transformed dataset of the GEO database9. For the conversion, a copy of the
SQLite3 GEO database10 was obtained and converted to the RDF format using Sparqlify11, a scal-
able SPARQL-SQL rewriter. All seven tables (GSM, GSE, GPL, GDS Dataset and GDS Subset,
GSE_GPL and GSE_GSM12) in GEO were converted to RDF13 by mapping the column name as
properties and using the unique Sample ID as the resource IDs. For example, the Listing 1 shows
an excerpt of the RDF representation of a single Sample (GSM1272900).

8https://www.w3.org/RDF/
9Detailed description of the RDF format is out of scope of this article

10available at http://gbnci.abcc.ncifcrf.gov/geo/index.php version January 23 2016, 264.5 MB, 07:23:09)
11https://github.com/AKSW/Sparqlify
12Information about these tables provided at https://www.ncbi.nlm.nih.gov/geo/info/overview.html
13Scripts available at https://github.com/amrapalijz/GEO

https://www.w3.org/RDF/
http://gbnci.abcc.ncifcrf.gov/geo/index.php
https://github.com/AKSW/Sparqlify
https://www.ncbi.nlm.nih.gov/geo/info/overview.html
https://github.com/amrapalijz/GEO
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Figure 2. Top most frequently occurring keys in GEO.

1 PREFIX geo: <http :// bio2rdf.org/geo:>
2 PREFIX gvoc: <http :// bio2rdf.org/geo_vocabulary:>
3

4 geo:GSM1272900 a geo_vocabulary:Sample;
5 geo_vocabulary:gsmID "GSM1272900 ";
6 gvoc:key geo:GSM1272900/cell %20line ,
7 geo:GSM1272900/strain ,
8 geo:GSM1272900/treatment .
9

10 geo:GSM1272900/cell %20 line geo_vocabulary:value geo:GSM1272900/rn2;
11 rdfs:label "cell line" .
12

13 geo:GSM1272900/rn2 rdfs:label "rn2" .

Listing 1. Excerpt of the RDF representation of a single Sample (GSM1272900).

The ‘Characteristics’ column in the GSM Samples table, however, was poorly formatted with sev-
eral metadata keys and values in the same column. The standard representation of key1: value1;
key2: value2 was not always followed (e.g. "Gender: unknown; Tissue: liver; Tumor stage:
carcinoma (GSM341738) vs. Age (yrs),38.63,PMI (hrs),8,gender,m (GSM341548)). Thus, with a
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direct mapping of the cell to the object value of a triple lead to poor representation of the metadata.
Thus, we first converted the data to JSON by separating out the key: value pairs using different
delimiters and then converted it to RDF14. The RDF data was then loaded in a Graph Database15

to query and retrieve specific parts of the dataset available at http://graphdb.dumontierlab.com16.
Listing 2 shows an example of a SPARQL query to retrieve all the values belonging to the key ‘age’
and sorting them in descending order.

1 PREFIX gvoc: <http :// bio2rdf.org/geo_vocabulary:>
2 PREFIX rdfs: <http ://www.w3.org /2000/01/ rdf -schema#>
3 SELECT DISTINCT ?valuelabel COUNT(? valuelabel)
4 WHERE
5 {
6 ?x a gvoc:Key .
7 ?x rdfs:label "age"^^<http :// www.w3.org /2001/ XMLSchema#string >.
8 ?x gvoc:value ?value.
9 ?value rdfs:label ?valuelabel.

10 } ORDER BY DESC(COUNT(? valuelabel))

Listing 2. SPARQL query to retrieve all the values belonging to the key ‘age’ sorted in
descending order.

Figure 2 shows the top most frequently occurring keys in GEO sample data.

3.2. Crowdsourcing Methodology

For the crowdsourcing experiments, we selected total of 1643 keys associated with eight (top most
frequently occurring) categories: (i) cell line, (ii) disease, (iii) gender, (iv) genotype, (v)
strain, (vi) time, (vii) tissue and (viii) treatment. We retrieved the corresponding top 5 most
frequently occurring values for each of the keys and, using the SPARQL query shown in Listing 1
to display to the crowd. Definitions for each of these categories were obtained the Semanticscience
Integrated Ontology (SIO17) (Dumontier et al., 2014) and Medical Subject Headings ontology18.

Candidate syntactic variants of each key were obtained through regular expressions using SPARQL
FILTER clause. For example, by querying for ‘disease’, all keys with this keyword were retrieved
such as ‘disease state’, ‘disease specific survival years’, ‘disease onset’ etc. Two independent re-
searchers manually categorized 60 of the total set of keys, which we used as our gold standard.
Then, we generated microtasks as depicted in Figure 3. For each microtask, the worker is provided
with a ‘Term’ (i.e. the key) along with five of the most frequently occurring example values. A
list of the eight key categories are provided along with a definition for each. The worker’s task is
to analyze the given ‘Term’ and five values, and choose the category that the ‘Term’ best belongs
to. For example, if the ‘Term’ is ‘disease specific survival (years)’ and the values are ‘8.22, 17.66,
4.51, 0.89, 12.19’, the correct category is ‘time’, but not ‘disease’.

14https://github.com/yamalight/gsmCharacteristics
15http://graphdb.ontotext.com/
16Toggle for the option ‘GEO’ on the upper right hand corner
17Available at https://bioportal.bioontology.org/ontologies/SIO
18http://bioportal.bioontology.org/ontologies/MESH, last accessed April 2017

http://graphdb.dumontierlab.com
https://github.com/yamalight/gsmCharacteristics
http://graphdb.ontotext.com/
https://bioportal.bioontology.org/ontologies/SIO
http://bioportal.bioontology.org/ontologies/MESH
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An additional option of ‘Don’t know/I cannot tell’ was also provided. When the worker clicks on
this option, five reasons are presented (also shown in Figure 3):

– Does not fit into any category
– The term is ambiguous.
– There is not enough information provided to choose the right category.
– I do not understand the examples.
– I am not sure.

The worker must choose one of these five reasons when they are unsure which category that term
can belong to. This information can then be used to understand the rationale for disagreement for
particular keys.

Figure 3. Example of the microtasks provided to the workers on CrowdFlower.

Task Settings:

– Workers were recruited using the Figure Eight platform. We chose ‘Level 2’ workers, which are
a small group of more experienced, higher accuracy contributors19. The workers were provided
with an overview of the task, instructions for the steps to follow, rules and tips (e.g. ‘If you do
not know which category the term can belong to, please choose “Don’t know/I cannot tell”’.) and
positive and negatives examples of the answers to guide them.

– We initially assigned 3 workers per microtask and enabled the ‘Dynamic Judgment’ setting,
which automatically requests additional judgments if contributors disagree on an answer. We

19In CrowdFlower, there is an option to choose ‘Level 1’ workers, which provides the fastest throughput
(but not necessarily high quality judgments), ‘Level 3’ workers, which are the smallest group of experienced,
highest accuracy contributors and ‘Level 2’ workers, which are a small group of more experienced, higher
accuracy contributors. Thus, since we wanted a larger set of workers as well as those with high accuracy, we
chose ‘Level 2’ workers.
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set the maximum number of judgments to be 7 or when the minimum confidence of 0.80 is
reached. The minimum accuracy for the test questions was set to 80%. Majority consensus was
used to select the final answer and to test the workers’ reliability based on their agreement with
other workers.

– We paid 5 cents per judgment and grouped 10 rows (each row corresponding to a metadata key)
per page and set the minimum time a worker spends on each page to be 12 seconds.

– For quality control, there were 60 test questions in total and each page contained 9 rows and 1
test question. These test questions ranged from simple (e.g. keys belonging to one category) to
complex ones (e.g. keys that can belong to more than one category).

The datasets analyzed during the current study are available in the GEO repository available at
http://gbnci.abcc.ncifcrf.gov/geo/index.php. All the input GEO metadata and the crowdsourcing
results are available on our website at http://ws.nju.edu.cn/geo-clustering/.

4. EVALUATION AND RESULTS

We evaluated our approach for 1,643 GEO metadata keys belonging to eight key categories: (i)
cell line, (ii) disease, (iii) gender, (iv) genotype, (v) strain, (vi) time, (vii) tissue and
(viii) treatment. Table 1 summarizes the overall results. The approach resulted in an overall accu-
racy20 of 0.93 on all the tasks (including gold standard questions). Furthermore, we calculated the
specificity and sensitivity and observed that crowd workers obtained slightly higher values of speci-
ficity than sensitivity (0.95 vs. 0.91), which suggests that workers perform better when correctly
detecting true negatives.

A total of 145 workers performed the tasks and a total of 7835 judgments were provided (including
test questions). The total cost of the experiment was $470 (7835 judgments * $0.05 paid per judg-
ment = $391.75 + 20% transaction fee $78.35) and total time was ~1 hour. The IQM (Interquartile
Mean) task time by trusted contributors was 3m 29s and that of untrusted contributors was 7m 43s.
The average accuracy for gold standard questions only for trusted contributions was 90% and that
of untrusted contributions was 62%21.

Table 2 reports the number of keys and accuracy achieved with 3 workers as well as overall accuracy
with all workers for each of the eight key categories. The highest overall accuracy was achieved for
the ‘genotype’ category at 0.98 and the comparatively lowest accuracy was for the ‘gender’ category
at 0.90. Accuracy for the other categories ranged from 0.908 to 0.96. From the total of 1643 keys,
1454 achieved consensus with 3 workers, 66 keys with 5 workers and 131 keys with 7 workers. The
option ‘Don’t know/I cannot tell’ was chosen 100 times. From the 5 reasons, 42 workers chose R1,
29 chose R3, 16 chose R2, 7 chose R4 and 6 chose R5.

For the ‘cell line’ category (including the ‘cell type’ keys), 98 keys of 109 key were correctly
classified by 3 workers per key. Keys that belonged to the ‘time’ category such as ‘cell line source
age’ and ‘cell line initiation date’ were assigned to 7 workers. 5 of the workers correctly classified
these keys since the values indicated a time point. The workers chose the reasons R1 and R3, R4 for

20Accuracy is the percentage of the correct answers on the total.
21https://success.crowdflower.com/hc/en-us/articles/202703305-Glossary-of-Terms#trust_score

http://gbnci.abcc.ncifcrf.gov/geo/index.php
http://ws.nju.edu.cn/geo-clustering/
https://success.crowdflower.com/hc/en-us/articles/202703305-Glossary-of-Terms#trust_score
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Table 1. Results of the crowdsourcing experiment

No. of microtasks (keys) 1643 rows
Total no. of workers 145
Total no. of judgments 7835
Overall accuracy 0.93
Sensitivity 0.91
Specificity 0.95
No. of gold standard questions 60
Accuracy on gold standard questions 0.93
Agreement (%) 94.42
Average confidence for workers 0.91
Total cost 470$
Total time 1 hour
Inter-quartile mean task time by trusted and untrusted contribu-
tors

3m 29s, 7m 43s

the keys ‘targeted cell type’ and ‘pancreatic cell type’. However, these workers had comparatively
lower trust scores of 0.80.

In case of the ‘disease’ category, from the 85 keys, 61 keys were correctly classified by 3 workers
for each key. Keys that, in particular, belong to the ‘time’ category as indicated by the values such
as ‘disease free survival (month)’, ‘duration of disease (month)’, ‘mean disease duration’, ‘disease
duration (yrs)’, ‘disease-free survival (dfs)’, ‘disease phase’ were assigned and correctly classified
by 7 workers for each key. However, there was low consensus for the keys ‘code disease-specific
survival’, ‘stage of disease’, ‘trg disease state’, ‘disease progression (event)’, ‘diseasestatus’, ‘dis-
ease/treatment status’, ‘disease_state’. One of the workers chose the reason R1 for the ‘diseasesta-
tus’ key since it’s values ‘1, 2, nafld, nash, normal control’ were inconsistent and non-informative
to choose the best fit.

For the ‘gender’ category, out of the 72 keys, 63 keys were correctly classified by 3 workers for
each key. There were several keys that potentially belong to another category such as ‘cell sex’,
‘sex/age at diagnosis (years)’, ‘strain c57bl/6 gender’, ‘cell line source gender’, ‘genotyped sex’,
‘gender and age’. 7 workers were assigned for each of these keys who, in majority, classified the
keys correctly. However, there were keys with no consensus (e.g. ‘w sex’, e.g. ‘sex chromosome
complement’) and the workers chose either of the following reasons: R1, R2, R3 or R5 indicating
that they either did not understand the term or the examples.

From the 112 keys in the ‘genotype’ category, 106 achieved consensus by assigning 3 workers for
each key. There were disagreements for keys such as ‘agenotype’ where the worker incorrectly
chose ‘time’ (1 out of the 7 workers) and ‘tissue genotype/variation’ where the worker incorrectly
chose ‘tissue’ (4 out of the 7 workers). However, for the key ‘strain genotype’, the workers correctly
chose ‘strain’ (5 out of the 7 times).
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Table 2. Accuracy for each key of the eight key categories.

Key No. of keys Correct classifica-
tion by 3 workers

Accuracy with 3
workers

Overall accuracy

Cell line 109 98 0.89 0.95
Disease 85 60 0.70 0.93
Gender 72 61 0.84 0.90
Genotype 112 106 0.94 0.98
Strain 181 154 0.85 0.96
Time 698 658 0.94 0.90
Tissue 145 123 0.84 0.94
Treatment 242 192 0.79 0.94

For the ‘strain’ category, from the 181 keys, 154 keys were correctly classified by assigning 3 work-
ers for each key. However, for several keys, the workers chose different reasons for not choosing
a category: ‘strain by4741 ptc3’ (R1), ‘strain (genetic background)’ (R2), ‘organ-derived dc strain’
(R2 and R5), ‘strain sr1187’ (R4), ‘strain id’ (R4) and for the key ‘strain fgsc number’ (R1 and
R3). This indicated that the workers were unsure about which category the key fit best as either they
found the term ambiguous or did not understand the examples. Moreover, for the keys ‘strain/cell
line background’ and ‘strain/genotype variation’, there were disagreements between the workers in
choosing the ‘strain’, ‘cell line’ and ‘genotype’ categories. The values for these keys were ambigu-
ous which led to the perplexity.

In case of the ‘time’ category with 698 keys, 662 keys were correctly classified by assigning 3 work-
ers to each key. Keys for which the workers either chose ‘time’ or ‘treatment’ were, for example,
‘treatment time’, ‘time to treatment (days)’, ‘age at start of treatment’, ‘time of treatment’. How-
ever, the majority consensus was towards ‘time’ since the values indicated a time point. For the key
‘age/disease timepoint’, 1 out of 7 worker incorrectly chose ‘disease’. For the keys ‘sampling age’
and ‘age at time of surgery’, two workers each chose the reason R1 since the values did not indicate
any unit, which made it difficult for them to determine the best category. For the ‘8 weeks. tissue’
pair, the workers correctly chose ‘tissue’ as the category even though the key itself indicated a time
point. On the other hand, for the key ‘age at rc’, the workers chose the R2 and R3 reasons indicating
that they found the term ambiguous with not enough information to choose the right category since
it had only one value ‘51.33’ with no units. The key ‘tissue/development stage’ was classified into
the ‘tissue’ category by the workers (only one chose ‘time’). The value for this key ‘inflorescences
including floral stages 1-13’, however, does not provide enough information to classify it correctly.

For the ‘tissue’ category, out of the 145 keys, 126 were correctly classified by assigning 3 workers
for each key. Keys for which 7 workers were assigned were ‘age and tissue’, ‘day of tissue dissec-
tion’ and were correctly classified into the ‘time’ category. The workers chose the reason (i) R3 for
the key ‘tissue & age’ with values such as ‘fiber 2 dpa’ and ‘npcs of neocortex from 3 littermates
wild-type mouse embryos at e14’; (ii) R1 for the key ‘tissue ph’ with the values ‘6.46’ and ‘6.43’.;
(iii) R2 for the key ‘tissue derivation’ with the values ‘adenoid cystic carinoma of the parotid gland’
and ‘pancreatic tumor’ indicating that they found the term ambiguous or needed more information
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to choose the best fit. However, the key ‘tissue/treatment id’ with values ‘4’, ‘2’ etc, is ambiguous
and does not fit into either of the ‘tissue’ or ‘treatment’ category correctly.

From the 242 keys in the ‘treatment’ category, 192 keys were correctly classified by assigning 3
workers for each key. The keys ‘duration of il-6 treatment’, ‘treatment duration’, ‘days of treatment’,
‘tnfa treatment time point’, ‘length of treatment’ were correctly classified to the ‘time’ category by
assigning them to 7 workers each. However, there was disagreement regarding the best fit for the key
‘small molecule treatment’ as the values are ‘repsox at 24 hours’ and ‘repsox at 48 hours’ indicated
‘time’ but the workers chose ‘treatment’ 4 out of the 5 times.

5. DISCUSSION

Lessons Learned The results of the experiments lead to the following conclusions and lessons
learned:

– RQ1: From the results achieved in the MetaCrowd experiment, we conclude that the performance
of the crowd is sufficient to partly perform biomedical metadata quality assessment. Partly be-
cause there is still need for experts to identify domain specific quality issues. In terms of the
time taken to complete the task, which was within 1 hour for c.a. 1600 tasks, this is efficient
as opposed to one person completing all the tasks. The tasks were costly since we added up to
7 workers. However, we can optimize the task-worker assignment using our statistical method,
CrowdED (Zaveri et al., 2018), which a-priori estimates the optimal number of worker and task
assignment to obtain maximum accuracy. Although the overall accuracy was high with 93%, the
sensitivity and specificity values for the tasks gave more insight into the performance of the work-
ers. The lower performance of the workers in terms of sensitivity (as compared to specificity) was
not surprising, since this particular task requires certain domain knowledge about biological data
and experiments.

– RQ2: Overall, the workers could correctly identify the category for those keys that contained the
category phrase in the key name. In effect, this showed that non-expert workers have the neces-
sary meta-cognitive skills to assess which keys belong to which category and more importantly,
which ones do not belong to any category. However, they were unable to correctly identify cate-
gories for certain types of keys. Even though the five top-most frequently occurring values were
provided to the workers, it was interesting to note that they were not able to choose the relevant
category. This was due to either (i) lack of semantically annotated values, (ii) ambiguous nomen-
clature of keys as well as the values, (iii) values indicating that keys belong to more than one
cluster or (iv) inconsistent usage of the particular metadata key. In particular, there was higher
accuracy for the key categories ‘genotype’ and ‘strain’ (0.98 and 0.96 respectively) but lower ac-
curacy for the key categories ‘gender’ and ‘time’ (0.90 and 0.90 respectively). This was because
for the former categories, the keys contained the respective names in the key itself (e.g. ‘mouse
strain’, ‘virus strain’, ‘genotype p53’, ‘plant genotype’) whereas for the latter categories, there
were variants in the nomenclature leading to confusions. Additionally, using the MetaCrowd ap-
proach only for the top frequently occurring keys gave us an understanding of the strengths and
limitations of the crowd. This information will guide us for designing crowdsourcing experiments
for the entire dataset.
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6. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

Improvements in the quality of biomedical metadata aids in (i) understanding the nature of a dataset,
(ii) improves the ability to query for studies involving particular characteristics, and (iii) augments
reuse of existing data beyond what the original investigators envisioned to uncover novel insights
from the data. This would have a huge impact for data consumers as well as producers for curating
and providing good quality metadata in order to re-use the data. This is extremely important when it
comes to the FAIR principles of data as well as metadata in order to ensure that data that is already
available is maximally Findable, Accessible, Interoperable and Reusable (Wilkinson et al., 2016).
Ultimately, improving the quality and quantity of metadata for biomedical datasets is crucial to drive
the next paradigm shift in data reuse.

In this paper, we describe MetaCrowd, a crowdsourcing solution to curate and assess the quality of
gene expression metadata from selected samples in the GEO database. Through the crowdsourcing
experiment on Figure Eight and empirical analysis, we found that the crowds input is cost-effective
and efficient to identify correct and incorrect biomedical metadata terms. In that, however, there
were differences in assessing specific types of metadata keys. In general, those keys which contained
the category phrase in the key name were easier to categorize and those keys which contained
phrases from two different categories were harder. Moreover, the poor quality of the values for the
keys added to the difficulty of choosing the right category for the key.

The proposed approach and the lessons learned can be used to assess other datasets which have (sim-
ilar) metadata quality issues (e.g. BioSamples22). As future work, we aim to combine automated
methods such as machine learning with crowdsourcing in an iterative and adaptive cycle such that
the automated methods “learn” from human input to ultimately identify erroneous metadata accu-
rately. This combination will facilitate reducing time and costs and maximize the quality of results
to perform large-scale metadata quality assessment.
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