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ABSTRACT

One subclass of human computation applications are those directed at tasks that involve planning
(e.g. tour planning) and scheduling (e.g. conference scheduling). Interestingly, work on these
systems shows that even primitive forms of automated oversight on the human contributors helps
in significantly improving the effectiveness of the humans/crowd. In this paper, we argue that the
automated oversight used in these systems can be viewed as a primitive automated planner, and that
there are several opportunities for more sophisticated automated planning in effectively steering
crowdsourced planning. Straightforward adaptation of current planning technology is however
hampered by the mismatch between the capabilities of human workers and automated planners. We
identify and address two important challenges that need to be overcome before such adaptation of
planning technology can occur: (i) interpreting inputs of the human workers (and the requester)
and (ii) steering or critiquing plans produced by the human workers, armed only with incomplete
domain and preference models. To these ends, we describe the implementation of AI-MIX, a plan
generation system that uses automated checks and alerts to improve the quality of plans created by
human workers.

1. INTRODUCTION

Human computation (Law and von Ahn, 2011) is emerging as one of the fastest growing fields
to solve computationally hard problems because it offers a powerful and inexpensive alternative
that helps combine the relative strengths of humans and computers. This field is attracting more
attention from different research communities as interesting connections between them and human
computation are being revealed (Dai et al., 2010, 2011; Kamar et al., 2012; Lotosh et al., 2013).
In solving computationally hard problems from different fields – especially those that require
input from humans, or for which the complete model is not known – human computation has
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emerged as a powerful and inexpensive approach. One such core class of problems is planning.
Several recent efforts have started looking at crowd-sourced planning tasks (Law and Zhang, 2011;
Zhang et al., 2012, 2013; Lasecki et al., 2012) which attempt to optimize workflows used in
crowdsourcing (Kamar et al., 2013; Dai et al., 2013), learning and planning to guide the best use
of people and machines in hierarchical tasks (Kamar and Horvitz, 2015), etc. Just as in a formal
organization, the quality of the resulting plan depends on effective leadership. We observe that in
most of these existing systems, workers are steered by primitive automated components that merely
enforce checks and ensure satisfaction of simple constraints. Encouragingly, experiments show that
even these primitive automated components improve plan quality, for little to no investment in terms
of cost and time (Zhang et al., 2012).

This begs the obvious question: is it possible to improve the effectiveness of crowdsourced planning
even further by using more sophisticated automated planning technologies? It is reasonable to expect
that a more sophisticated automated planner can do a much better job of steering the crowd (much as
good human managers “steer” their employees more effectively). Indeed, work such as (Law and
Zhang, 2011) and (Zhang et al., 2012) is replete with hopeful references to the automated planning
literature. There exists a vibrant body of literature on automated plan generation, and automated
planners have long tolerated humans in their decision cycle – be it mixed initiative planning (Ferguson
et al., 1996) or planning for teaming (Talamadupula et al., 2010). The context of crowdsourced
planning scenarios, however, introduces a reversed mixed initiative planning problem – the planner
must act as a guide to the humans, who are doing the actual planning. The humans in question can be
either experts who have a stake in the plan that is eventually created, or crowd workers demonstrating
collective intelligence.

In this paper, we present AI-MIX (Automated Improvement of Mixed Initiative eXperiences), a new
system that implements a general architecture for human computation systems aimed at planning
and scheduling tasks. AI-MIX foregrounds the types of roles an automated planner can play in
such systems, and the challenges involved in facilitating those roles. The aim of our research is
to implement and evaluate a spectrum of solutions for the most critical challenges in the AI-MIX
system which include:

Interpretation: Understanding the requester’s goals as well as the crowd’s plans from semi-
structured or unstructured natural language input.

Steering with Incompleteness: Guiding the collaborative plan generation process with the use of
incomplete models of the scenario dynamics and preferences.

The interpretation challenge arises because human workers find it most convenient to exchange or
refine plans expressed in a representation as close to natural language as possible, while automated
planners typically operate on more structured plans and actions. The challenges in steering are
motivated by the fact that an automated planner operating in a crowdsourced planning scenario
cannot be expected to have a complete model of the domain and the requester preferences; if it does,
then there is little need or justification for using human workers as it can automatically generate the
best plan that meets requester preferences and also knows which type of plan to generate. Both of
these challenges are further complicated by the fact that the (implicit) models used by the human
workers and the automated planner are very likely to differ in many ways, making it challenging for
the planner to critique the plans being developed by the human workers.
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Figure 1. A generalized architecture for crowdsourced planning systems that includes Requester, Crowd,
Distributed Blackboard (DBb) and Planner.

In this paper, we first provide a brief survey on the existing crowdsourced planning systems and
how they are related to the current system proposed in this paper. We then look at planning for
crowdsourced planning in more detail, and present a generalized architecture for this task. Next,
we consider the roles that an automated planner can play within such an architecture, and discuss
the challenges that need to be tackled in order to facilitate those roles. We then describe the
AI-MIX system, and the types of planning support it provides to the crowd workers. We then
present an empirical study aimed at understanding the impact of automated planning support on the
effectiveness of crowd-sourced planning. Accordingly, our general strategy involves comparing the
relative performance of different versions of AI-MIX with increasing levels of planning support.
We present and discuss results of two sets of experiments done both on Amazon Mechanical Turk
platform, and on a separate standalone platform. Our results show that increased planning support that
goes beyond simple constraint checking (as used in earlier systems) does indeed result in improved
performance of crowd planning. In our previous work only the suggestions provided by the crowd
are analyzed. Plans generated from these suggestions in different experimental settings are included
in this paper. Thus the summary of our contributions are as follows:

i. We address the interpretation challenge as follows:
– Our system leverages established natural language processing techniques to automatically

detect the type and context of actions described in the crowd suggestions.
ii. We address the steering challenge as follows:

– The system provides planning support by automatically extracting subgoals.
– It automatically performs constraint checking on duration and cost.
– It lets crowd workers to critique the existing plan actions.
– When no other sub goals can be extracted and all the constraints have been satisfied, the

system generates an automated plan or schedule to reflect the crowd suggestions.
iii. Finally we deploy this system in different experimental scenarios to evaluate the strengths

of this approach as compared to the state of the art approaches in crowd planning.
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2. RELATED WORK

Research in planning and crowd-sourcing intersect paths in three different ways: (i) to use the crowd
to do planning tasks (ii) to use the crowd to provide planning knowledge, to be used by an automated
planner, and (iii) to use the planning technology to manage the crowd and their activities (e.g. monitor
the crowd quality, allocate Human Intelligent Tasks (HITs)1, optimize the workflow etc) . Of these,
the first direction is the one most relevant to this paper–as our focus is on using automated planning
technology as a “force multiplier” to help the crowd workers engaged in planning tasks. Accordingly,
we start this section with a comprehensive account of related work in that direction.

A number of other implemented human computation systems that use automated technology to assist
with and improve the quality of tasks other than planning are listed in a wide-ranging survey (Quinn
and Bederson, 2011) of the field. Our paper focuses solely on the crowd-planning aspect, rather than
the gamut of general human-computation tasks. Both the challenges of interpreting the crowd’s plan
and the challenge of steering it can have primitive solutions (e.g. force structure and critique the plan
in terms of lower level consistency checks), and more ambitious solutions (e.g. interpret structure by
extracting actions and plans from text, and evaluate the extracted plan in terms of the planning model
to provide constructive extensions or alternatives for the crowd’s consideration). Most existing work
uses the primitive solutions for interpretation and steering. Their success argues for the exploration
of more ambitious solutions to these problems. A few systems have attempted to solve some version
of the crowdsourced planning problem. All of these systems can be seen as special cases of the
general architecture described in the latter section of this paper. We describe these approaches that
rely on automated systems to improve the synthesis of crowd-plans and the quality of those plans.

Mobi (Zhang et al., 2012) takes a planning mission that consists of both preferences and constraints
as input from a requester, and generates a plan or itinerary by allowing workers in the crowd to plan
in a shared manner. Constraints are limited to two types: qualitative; and quantitative that may be
specified either over the amount of time to be spent on activities in each category, or on the number
of such activities. They show that: (i) for the same amount of money spent on human workers, a
system with automated alerts tends to come up with higher quality plans; and (ii) the automated
alerts tend to spur the plan towards breaching a set plan quality threshold in far fewer steps than
a system without them. Another system proposed in (Law and Zhang, 2011) – which introduces
CrowdPlan, a collaborative planning algorithm, takes as input a high-level mission from the user and
provides web-based resources for accomplishing that mission. To facilitate this, CrowdPlan uses
human workers to decompose the high-level mission into goals (like “stop smoking”, “eat healthier
food”). Although the decomposition process has similarities to HTN planning (Nau et al., 2003),
CrowdPlan itself doesn’t have any automated planning component overseeing the human workers.

On the other hand, there are systems like CrowdPlanr (Lotosh et al., 2013) that focus more on
sequencing the steps in a plan once the actions themselves have been selected. CrowdPlanr takes
a given set of actions, determines the least number of questions (and what those questions are) to
ask the crowd of workers to achieve a plan of acceptable quality. The model consists of both the
constraints specified by the requester as well as the crowd’s knowledge. It is quite likely that the
quality of plans produced by such a system would be sensitive to the familiarity of the workers
with the task at hand. The Cobi (Zhang et al., 2013) system employs the same basic idea – that

1Human Intelligence Task (HIT) is the individual task that the turkers work on.
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the crowd assisting with the planning already has a built-in model of preferences and constraints.
Cobi sought to “communitysource” the scheduling of a large-scale conference (CHI 2013) by taking
input from organizers, as well as authors and attendees in order to come up with a schedule (plan)
of good quality, that violates a fewer number of constraints while being feasible. The collection
of constraints, and the grouping of papers into areas of expertise for the clustering, may be seen
as Cobi’s model. The automated system thus uses this model in order to resolve as many of the
constraints as possible, and come up with a conference schedule which is both satisfactory, and more
importantly transparently collaborative.

The system proposed (but not yet implemented) by (Lasecki et al., 2012) is the closest in spirit
and idea to applying automated planning methods on a distributed interaction platform to aid
crowdsourced planning. That system allows workers to decompose tasks and interact by posting
constraints and further sub-tasks to the problem of planning a trip. The automated system enables
collaboration amongst the workers and the requester, and also extracts additional information from
their input (restricted to a structured form) in order to update the model.

The role played by automated planning in crowdsourced planning problems has interesting connec-
tions and contrasts to the role of planners in mixed-initiative planning (Ferguson et al., 1996) and
human-in-the-loop planning (Kambhampati and Talamadupula, 2015). Broadly speaking, mixed-
initiative planning work involved humans entering the land of planners; while crowdsourced planning
requires the planner to enter the land of humans. For example, in mixed-initiative planning, the
"interpretation" problem is punted away by expecting the human in the loop to interact with the
plan on the planner’s terms; this will certainly not work in crowdsourced planning. Further, in
mixed-initiative and human-robot teaming scenarios, the planner is expected to have a complete
model of the planning problem – which is rarely the case in crowdsourced planning. Instead, the
planner must deal with a model-lite (Kambhampati, 2007) spectrum, where models may range
from simple feasibility constraints, through incomplete theories of the task domain and, very rarely,
preferences specified in a standardized format. Planning techniques that have so far expected input
in standard forms (like PDDL) must also change to take this model-lite spectrum into account.

We will end this section with a brief discussion of the other two intersections between planning and
crowdsourcing. The approach described in (Zhuo, 2015) is an example of using the crowd to acquire
planning knowledge (domain operators, initial state information etc.), which can then be used by
an automated planner. In (Zhuo, 2015), they acquire formal domain action descriptions through a
combination of crowd-sourced knowledge, and prior planning traces. Our work, in contrast, focuses
on using planning technology to complement the crowd workers engaged in planning tasks.

There are several research efforts that use planning and scheduling techniques to manage the
crowd, regardless of the specific task being supported by the crowd-sourced system. The work
proposed in (Dai et al., 2011) is an example of the strand of research where planning techniques
are used to manage the crowd resources. The TurKontrol project, which is an end-to-end system
that dynamically optimizes live crowdsourcing tasks, and deals with the problem of assigning
HITs to both improving the quality of a solution, as well as checking the current quality. This
work also concentrates on optimizing iterative, crowdsourced workflows by learning the model
parameters (Weld et al., 2011) from real Mechanical Turk data, and modeling worker and his accuracy
(for quality improvement) (Kamar and Horvitz, 2015) and voting patterns and incentives (Mao et al.,
2013) (to check the quality of work done). Such systems are independent of the actual task at hand
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– whether that be text improvement or human intelligence to produce plans – and focus more on
worker-independent parameters to assign improvement and voting jobs instead.

3. PLANNING FOR CROWDSOURCED PLANNING

The crowdsourced planning problem involves constructing a plan from a set of activities suggested
by the crowd as a solution to a task, usually specified by a user called the requester. The requester
provides a high-level description of the task - most often in natural language - which is then forwarded
to the crowd workers (or turkers in this paper we use these terms interchangeably). The turkers can
perform various roles, including breaking down the high-level task description into more formal
and achievable sub-goals (Law and Zhang, 2011), or adding actions into the plan that support those
sub-goals (Zhang et al., 2012). The term planner is used to refer to the automated component of the
system - it performs various tasks ranging from constraint checking, to optimization and scheduling,
and action recognition. The entire planning process must itself be iterative, proceeding in several
rounds which serve to refine the goals, preferences and constraints further until a satisfactory plan is
found. A general architecture for solving a crowdsourced planning problem is shown in Figure 1.

Roles of the planner

The planning module, or the automated component of the system, can provide varying levels of
support. It accepts both the sub-goals SG, and crowd’s plan PC, as input from the turkers. This module
analyzes the current plan generated by the crowd, as well as the sub-goals, and determines constraint
and precondition violations according to the model MP of the task that it has. The planner’s job is to
steer the crowd towards more effective plan generation.

However, the three main actors – turkers, requester, and planner – need a common space in which
to interact and exchange information. This is achieved through a common interactive space – the
Distributed Blackboard (DBb) – as shown in Figure 1. The DBb acts as a collaborative space where
information related to the task as well as the plan that is currently being generated is stored, and
exchanged between the various system components.

In contrast to the turkers, the planner cannot hope for very complex, task-specific models, mostly due
to the difficulty of creating such models. Instead, a planner’s strong-suit is to automate and speed-up
the checking of plans against whatever knowledge it does have. The planner’s model MP can thus be
considered shallow with respect to preferences, but may range the spectrum from shallow to deep
where domain physics and constraints are concerned (Zhuo et al., 2012). The planning process itself
continues until one of the following conditions (or a combination thereof) is satisfied:

– The crowd plan PC reaches some satisfactory threshold and the requester’s original goal G is
fulfilled; this is a subjective measure and is usually determined with intervention from the requester.

– There are no more outstanding alerts, and all the sub-goals in SG are supported by one (or more)
actions in PC.

4. PLANNING CHALLENGES

In the current system’s architecture that is depicted in the Figure 1, a planner (automated system)
would interact with the rest of the system to perform one of two tasks: (1) interpretation and (2)
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steering. Interpretation is required for the planner to inform itself about what the crowd is doing;
steering is required for the planner to tell the crowd what they should be doing. In the next section,
we will describe specific components of the AI-MIX system which solve some of the planning
challenges listed here in more detail.

4.1. Interpretation of the Crowd’s Evolving Plan

The planner must interpret the information that comes from the requester, and from the crowd, in
order to act on that information. There are two ways in which the planner can approach this problem.

Force Structure

The system can enforce a pre-determined structure on the input from both the requester, and the
crowd. This can by itself be seen as part of the model MP, since the planner has a clear idea about
what kind of information can be expected through what channels. The obvious disadvantage is that
this reduces flexibility for the turkers. In a given planning scenario (we consider tour planning as our
main application domain that we explain in Section. 5), for example, we might force the requester to
number his/her goals, and force the turkers to explicitly state which goals their proposed plan aims to
handle (c.f. (Zhang et al., 2012)). The turkers could also be required to add other structured attributes
to their plans such as the duration and cost of various activities (actions) that are part of the plan.

Extract Structure

The planner can also extract structure from the turker inputs to look for specific action descriptions
that are part of the planner’s model MP, in order to understand what aims a specific plan is looking to
achieve. Although this problem has connections to plan recognition (Ramírez and Geffner, 2010), it
is significantly harder as it needs to recognize plans not from actions, but rather textual descriptions.
Thus it can involve first recognizing actions and their ordering from text, and then recognizing plans
in terms of those actions. Unlike traditional plan recognition that starts from observed plan traces
in terms of actions or actions and states, the interpretation involves first extracting the plan traces.
Such recognition is further complicated by the impedance mismatch between the (implicit) planning
models used by the human workers, and the model available to the planner.

Our system uses both the techniques described above to gather relevant information from the requester
and the turkers. The requester provides structured input that lists their constraints as well as goals (and
optionally cost and duration constraints), and can also provide a free unstructured text description for
the task. The turkers in turn also provide semi-structured data - they are given fields for activity title,
description, cost and duration. The turkers can also enter free text descriptions of their suggestions;
the system can then automatically extract relevant actions by using Natural Language Processing
(NLP) methods to match the input against the planner’s model MP.

4.2. Steering the Crowd’s Plan

The planner can steer the turkers by offering helpful suggestions, alerts, and perhaps even its own
plan. There are two main kinds of feedback an automated planner can provide to the human workers:
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Constraint Checking

One of the simplest ways of generating helpful suggestions for the crowd is to check for quantitative
constraints imposed by the requester that are violated in the suggested activities. In terms of the tour
planning scenario, this includes: (i) cost of a particular activity; and (ii) the approximate duration of
an activity. If the requester provides any such preferences, our system is able to check if they are
satisfied by the crowd’s inputs.

Constructive Critiques

Once the planner has some knowledge about the plan that the turkers are trying to propose (using
the extraction and recognition methods described above), it can also try to actively help the creation
and refinement of that plan by offering suggestions as part of the alerts. These suggestions can vary
depending on the depth of the planner’s model. Some examples include: (i) simple notifications of
constraint violations, as outlined previously; (ii) plan critiques (such as suggestions on the order of
actions in the plan and even what actions must be present); (iii) new plans or plan fragments because
they satisfy the requester’s stated preferences or constraints better; (iv) new ways of decomposing
the current plan (Nau et al., 2003); and (v) new ways of decomposing the set of goals SG.

5. AI-MIX ARCHITECTURE

Figure 2. The AI-MIX interface showing the distributed blackboard through which the crowd interacts with
the system.

The following section describes in detail the AI-MIX system that was deployed on Amazon’s MTurk
platform to engage the turkers in a tour planning task. The system is similar to Mobi (Zhang et al.,
2012) in terms of the types of inputs it can handle and the constraint and quantity checks that it can
provide (we discuss this further in Section 6.1). However, instead of using structured input, which
severely restricts the turkers and limits the scope of their contributions, our system is able to parse
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natural language from user inputs and reference it against relevant actions in a domain model. This
enables more meaningful feedback and helps provide a more comprehensive tour description.

5.1. Requester Input

The task description, as shown in Figure 2, is provided by the requester in the form of a brief
description of their preferences, followed by a list of activities they want to execute as part of the
tour, each accompanied by a suitable hashtag. For example, the requester might include one dinner
activity and associate it with the tag #dinner. These tags are used internally by the system to map
turker suggestions to specific tasks. The upper half of Figure 2 shows an example of a requester task,
which includes a block of text for the turkers to extract context from, and structured task requests
associated with hashtags.

5.2. Interface for Turkers

In addition to the task description, the AI-MIX interface also contains a section that lists instructions
for successfully submitting a Human Intelligence Task (HIT) on Amazon MTurk. HIT is the
individual task that the turkers work on, in this context consisting of either adding an action or a
critique, as discussed in more detail later. The remaining components, arranged by their labels in the
figure, are:

i. Requester Specification: This is the list of requests and to-do items that are yet to be
satisfied. All the unsatisfied constituents of this box are initially colored red. When a tag
receives the required number of supporting activities, it turns from red to green. Tags that
originated from the requester are classified as top-level tags, and are always visible. Tags that
are added by the automated planner or by turkers are classified as lower priority, and disappear
once they are satisfied by a supporting activity.

ii. Turker Inputs: Turkers can choose to input one of two kinds of suggestions: (i) a new
action to satisfy an existing to-do item; or (ii) a critique of an existing plan activity (action).

iii. Turker Responses: The “Existing Activities” box displays a full list of the current activities
that are part of the plan. New turkers may look at the contents of this box in order to establish
the current state of the plan. This component corresponds to the Distributed Blackboard
mentioned in Section 3.

iv. Planner Critiques: The to-do items include automated critiques of the current plan that
are produced by the planner. In the example shown, “broadwayshow_showing” is a planner
generated to-do item that is added in order to improve the quality of the turkers’ plan.

Finally, the right hand portion of the interface consists of a map, which can be used by turkers to
find nearby points of interest, infer routes of travel or the feasibility of existing suggestions, or even
discover new activities that may satisfy some outstanding tags. Turkers have two choices in terms of
the kinds of responses (HITs) that they can provide to the system: (i) they may add a new activity in
response to one of the to-do tags; or (ii) they may enter a critique or a note to point out flaws in one
of the existing activities.
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Activity Adddition

The “Add Activity” form is shown in Figure 3. Turkers may choose to add as many new activities as
they like. Each new activity is associated with one of the to-do tags. Turkers also have the option to
propose new tags (new missing goals) for their novel suggestions. After each activity is submitted, a
quantitative analysis is performed where the activity is (i) checked for possible constraint (duration
or cost) violations; and (ii) critiqued the planner.

Figure 3. Adding and critiquing activities (plan actions) in the AI-MIX system.

5.3. Interpretation: Action Extraction

To facilitate the extraction of meaning from the turker generated activities, the system performs parts
of speech (PoS) tagging on the activities to identify the name of the activity as well as the places that
turkers are referring to; currently, we assign the verb and noun parts of the tagger’s output to these
respectively. Due to its wide popularity in efficient tagging, we utilized the Stanford Log-Linear
Part-of-Speech tagger (Toutanova et al., 2003).

5.4. Steering: Planning Support

In AI-MIX, we experimented with different levels of automated planning support for crowd workers.
In addition to simple constraint checking (of the type done in systems like Mobi (Zhang et al., 2012),
we use a primitive PDDL (McDermott et al., 1998) domain description of general activities that
may be used in a tour-planning applications – this description corresponds to the planner model
MP introduced previously. Examples of actions in MP include high level activities such as visit,
lunch, shop etc. As discussed in the next two sections, the PDDL model is used to provide helpful
subgoal generation suggestions, as well as to do more sophisticated aggregation of crowd suggestions
into a globablly consistent plan/schedule.

Subgoal Generation

AI-MIX uses the same tags used by turkers while inputting activities in order to determine whether
the planner has additional subgoal annotations on that activity. Each activity is associated with a list
of synonyms, which help the planner in identifying similar activities. Currently, we generate these
synonyms manually, but it is trivial to automate this via the use of resources such as WordNet (Miller,
1995). Each action also comes with some generic preconditions. When the planner determines that
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a turker generated activity matches one of the actions from its model, it generates sub-goals to be
added as to-do items back in the interface based on the preconditions of that action. An example of
an action description (for the “visit” action) is given below:

(:action visit ;; synonyms: goto, explore
:parameters (?p - place)
:precondition (at ?p) ;; Getting to ?p,
;; Entrance fee ?p, ;; Visiting hours ?p
:effect (visited ?p))

In the example given above, the planner would pop up the three preconditions – Getting to,
Entrance fee, and Visiting hours – as to-do sub-goals for any visit actions suggested
by turkers. The system also provides some helpful text on what is expected as a resolution to that
to-do item – this is indicated by the yellow “planner critique” box in Figure 2.

Constraint Checking

In addition to generating sub-goals for existing activities, our system also automatically checks if
constraints on duration and cost that are given by the requester are being met by the crowd’s plan. If
these constraints are violated, then the violation is automatically added to the to-do stream of the
interface, along with a description of the constraint that was violated. Turkers can then choose to add
an action that resolves this to-do item using the normal procedure.

Adding Turker Critiques

The turkers can also add critiques of the actions in the existing plan. To do this, they use the form
shown in the lower half of Figure 3. The turkers click on an existing activity, and enter the note or
critique in a text box provided. Additionally, they are also asked to enter a child tag, which will be
used to keep track of whether an action has been added to the plan that resolves this issue. Turkers
are free to add as many critiques as they want.

Automated Plan/Schedule Generation from Crowd Suggestions

Finally, we compute a consolidated plan for the requester by translating the plan suggestions provided
by the crowd into the semantics of logic programming. We compile the suggestions into an Answer
Set Program (ASP), which acts as a declarative planner that identifies the answer sets or stable
models (or plans) that satisfy the preferences and constraints imposed by both the crowd and the
knowledge base. The workflow of our system shown in Figure 4 shows how the requester provides
a set of incomplete preferences, the crowd responds with activities or additional constraints, all of
which are compiled into an existing knowledge base which is then used to produce a logic program
to compute satisfying plans as answer sets when all the constraints has been satisfied.

The Tour Planning Domain is initialized with some basic knowledge base to start with and the
assumptions on some generic actions in the domain. For example, each problem is instantiated with
primitive actions like breakfast, lunch and dinner. These are then associated with time ranges when
these activities usually take place as given by rules (2) and (3). More actions involved specifically
with tourism (like a visit museum action and museum timings) can be added similarly.
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action(lunch;dinner;breakfast). (1)
← activity(dinner,T,X) & T<18. (2)
← activity(dinner,T,X) & T>22. (3)
activity(dinner,T1,1):time(T1). (4)

These actions are first initialized with choice rules such that any action can happen in any time. Then
each action is bound with the following (fairly intuitive) domain independent rules:

– no concurrence: no two actions can occur at the same time, given by rule (5).
– existence: it is maintained that at least one instance of each action requested for is there in the final

schedule, given by rule (6).
– uniqueness: one action occurs at one unique place over all the time points it is true - rule (7).
– contiguity: the same action must be true for contiguous periods of time, given by rule (8).

?[T,X]: activity(breakfast,T,X). (5)
← activity(A,T,X) & activity(AA,T,XX) & A!=AA. (6)
← activity(A,T,X) & activity(A,TT,XX) & X!=XX. (7)
activity(museum,TTT,X)← activity(museum,T,X) &

activity(museum,TT,X) & TTT>T & TTT<TT.
(8)

These rules are added to the program every time the crowd enters a new suggestion. The crowd
can impose further rules for their suggestions, like time (9) or durations (10) or even orderings (11)
which are all compiled into logic rules as shown. Specifically (9) says that the coffee activity, if it
exists, should occur at 10 O’clock, while (10) specifies that the museum visit should last one hour,
and (11) stipulates an ordering that the coffee activity should happen before 10 O’clock.

activity(coffee,10,1) ← ?[T]: activity(coffee,T,1). (9)
1{activity(museum,T1,1):time(T1)}1 ←

?[T]: activity(museum,T,1).
(10)

← activity(coffee,T,1) & T<10. (11)

In our system, the types of actions that already exist in the knowledge base, or are subsequently
added by the crowd, are identified by the unique hashtags used in the plan recommendations. The
forms through which the crowd interacts has both structured and unstructured parts to harness the
best abilities of both the crowd and the automated component. The unstructured free form text input
gives free description that is available back to the crowd to reason with, while the structured fields
are used to build the constraints in clingo. Specifically the activity tag is used as the domain predicate
(the crowd may suggest entirely new activities out-side the specifications, which go on to enrich the
domain model), and the location is added to the points of interest associated with this action. The
rest of the fields (time, duration, cost) are optional, which when entered adds the appropriate rules in
the asp compilation. Notice how most of these constraints are not binding (in the sense one rule can
overwrite another). This is necessary due to the iterative nature of the crowd-planning process, and
thus most of the fields are optional, or these constraints themselves have precedences. This is the
reason for the somewhat unconventional styling of some of the rules, as opposed to the case if we
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were solving a one-time specified problem. Cost does not contribute to the schedule and is hence
ignored in setting up the constraints.

We used f2lp 2 as a grounder and solver for this logic program to compute stable models or answer
sets when the program is satisfiable. These answer sets are the final plans that are obtained given all
the preferences and constraints. Currently we accept any answer set as a plan but frameworks like
asprin (Brewka et al., 2015) may be utilized for a quantitative and qualitative optimization for setting
preferences over stable models generated by the ASP solver.

Figure 4. Workflow of our system

The workflow in our system is shown in Figure 4.

6. EMPIRICAL STUDY

The overarching aim of our empirical study is to understand the impact of automated planning
support on the effectiveness of crowd-sourced planning. Accordingly, our general strategy was to
compare the relative performance of different versions of AI-MIX with increasing levels of planning
support. Thus we start with

i. a pure crowd planning instance,
ii. add constraint checking similar to Mobi’s (Zhang et al., 2012) approach,

iii. further add subgoal generation (which exploits the PDDL model), and finally
iv. add the automated plan assembling step.

Our original aim was to compare all these versions of AI-MIX on the Amazon MTurk platform.
However, we found that MTurk does not allow running external executables. Because of this, we
split our experiments into two different setups. One on Amazon MTurk, that compared only the first

2http://reasoning.eas.asu.edu/f2lp/

http://reasoning.eas.asu.edu/f2lp/
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- C2 C3
minimum 47 secs 59 secs
maximum 8 mins 26 secs 2 mins 43 secs
Average 3 mins 9 secs 1 mins 26 secs

Table 1. HIT completion times for the two conditions: C2 and C3

three instances of AI-MIX and another set of experiments on a separate stand-alone platform that
we built, to evaluate the AI-MIX system instance with plan assembling step. The next two sections
give the details of the two setups, and the comparison results from the experiments.

6.1. Experiments on Amazon Mechanical Turk

In this subsection, we present details about the performance of the proposed system with respect to
different experimental conditions that were all deployed on Amazon mechanical turk.

Experimental Setup

For our study, HITs were made available to all US residents (since the requests involved locations
inside the US) with a HIT approval rate greater than 50%. Turkers were paid 20 cents for each HIT,
and each turker could submit 10 HITs per task. We used tour planning scenarios for six major US
cities, reused from the Mobi system’s evaluation (Zhang et al., 2012). To measure the impact of
automated critiquing on generated plans, we compared results from three experimental conditions:

C1: Turkers could give suggestions in free text after reading the task description - there were no
automated critiques.

C2: Turkers quantified their suggestions in terms of cost and duration, and the system checked these
constraints for violations with respect to the requester demands.

C3: In addition to C2, the system processed free-form text from turker input, and extracted actions to
match with our planning model in order to generate alerts for sub-goals and missing preconditions.

We note here that in terms of planning support, Mobi system corresponds to the condition C2 in our
framework (as it only supported constraint checking). C1 and C2 were compared to the proposed
approach, C3, separately. Each set was uploaded at the same time, with the same task description
and HIT parameters. In the first run, C3 and C2 were compared on 6 scenarios (New York, Chicago,
San Francisco, Las Vegas, Washington and Los Angeles) and were given 2 days before the HITs
were expired. The interfaces for both C3 and C2 were made identical to eliminate any bias. In
the second run, the conditions C1 and C3 were run over a period of one day, for the two scenarios
which were most popular in the first run (New York and Chicago). For each of these tasks, the
requester prepopulated the existing activities with one or two dummy inputs that reflect the kinds of
suggestions she was looking for. In sum, we had more than 150 turkers who responded to our HITs.
The analysis that follows is from the 35 turkers who contributed to the final comparisons (only for
the New York City) among C1, C2, and C3.
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# Plan Suggestions Our Observations

1

Show: Go to TKTS half ticket discount booth. You have
to stand in line early but it’s an authentic nyc experience
#show(3 hours)(200.0 $)
Show: Go to show #show(3 hours)(200.0 $)
Show: ABSOLUTELY CANNOT go wrong with
Phantom of the Opera #show(3 hours)(200.0 $)
Lunch: Alice’s Tea Cup #lunch(20.0 $)
Design: Walk around the Garment District (go into
shops) just south of Times Square. They often print their
own fabrics. #design(2 hours)(0.0 $)
Dessert: Serendipity #dessert(1 hours)(10.0 $)

1) Redundant suggestions – In
this example, the action show has
multiple similar suggestions
2) Shorter plan suggestions
3) Vague suggestions – In this ex-
ample, the action show has very
high level descriptions to go and
watch a show

2

piccolo angolo: Italian in the Village - real deal
#italiandinner(2 hours)(60.0 $)
Lombardi’s Pizza: #italian_dinner #italiandinner_todo1
Ice Cream: http://www.chinatownicecreamfactory.com/
#italiandinner_todo0
#lunch: Mangia Organics #lunch_todo0
watch Wicked (musical): Do watch Wicked the musical.
It’s a fantastic show and one of the most popular on
Broadway right now! #broadwayshow(3 hours)(150.0 $)
watch How to Succeed in Business: Also a great show,
a little less grand than Wicked.
#broadwayshow(3 hours)(150.0 $)
Activity Steamer: #lunch #lunch_todo1
Paradis To-Go: Turkey & Gruyere is pretty delicious.
The menu is simple, affordable, but certainly worth the
time #lunch(1 hours)(10.0 $)
cupcakes!: Magnolia Bakery on Bleecker in the Village
#dessert(1 hours)(10.0 $)

1) Very detailed
2) Handling all the requester’s
preferences
3) Better utilization of the day

Table 2. Sample activity suggestions from turkers for the two conditions: C2 (top) and C3 (bottom). For both
of these conditions, same amount of money has been paid to each turker.
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Task Completion Latency

When C3 was compared to C1 over a period of one day, we found that C3 received four responses
from 3 distinct turkers, whereas C1 failed to attract any responses. To receive responses for a HIT,
the turkers have to accept the HIT before providing responses. In our scenario, C1 HITS were not
accepted by any turker. This might indicate that the presence of the “TO DO” tags generated by
the automated critiquing component was helpful in engaging the turkers and guiding them towards
achieving specific goals. However, there may also be alternate explanations for the fact that C1 did
not receive any inputs, such as turker fatigue, or familiarity with the C3 interface from previous runs.

We also looked at the number of HITs taken to complete the tasks for each of the scenarios. After the
HITs were expired, none of the tasks were entirely complete (a task is “completed" when there are
no more outstanding to-do items), but C2 had 3.83 unfulfilled tags per HIT as compared to 10.5 for
C3. As expected, the task completion latency seems to have increased for C3, since alerts from the
system drive up the number of responses required before all the constraints are satisfied. We also
verified the HIT completion time for a turker that we define as the difference between the time when
he accepted the HIT and the time he submitted the same HIT. The average HIT completion time for
C2 is 3 minutes 9 seconds where as, for C3 it is 1 minute 26 seconds. For C3, the task latency is
higher but HIT completion time is lower as shown in Table 1. These results show that in case of C3,
the probability of turker fatigue is low. As shown in the following section, the increased quality of
generated plans may justify the task latency.

Generated Tour Plan Quality

We see that the quality of the plans, in terms of detail and description, seems to increase in C3,
since we now have users responding to planner critiques to further qualify suggested activities. We
consider the plan comparisons as we are conducting an ablation study to recognize the importance
of automated planning technology on two similar systems (C2 and C3). For example, a turker
suggested “not really fun, long lines and can not even go in and browse around" in response to a
planner generated tag (related to a “fun club” activity suggested previously), while another suggested
a “steamer" in response to a planner alert about “what to eat for lunch”. A comparison between the
plans generated for C2 and C3 (for New York City) is given in Table 2. This seems to indicate that
including a domain description in addition to the simplistic quantity and constraint checks increases
the plan quality.

Role Played by the Planner Module

We now look at some statistics that indicate the role played by the automated module in the tasks. We
received a total of 31 new activity suggestions from turkers, of which 5 violated quantity constraints.
The C3 setting attracted 39 responses, compared to 28 for C2, which may indicate that the planner
tags encouraged turker participation. As shown by the HIT completion latencies, the planner module
helped in reducing the probability of turker fatigue by requesting goal suggestions clearly. On the
other hand, even though there is a task latency due to planner generating more subgoals to be fulfilled,
the overall quality of the plans is significantly improved.

Note that in the AI-MIX interface, there is no perceptual difference between the critiques generated
by the planner and the critiques suggested by humans. So it is interesting to see how the critiques are
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received by the other turkers. There were 8 flaws pointed out by humans, but none were acted upon
by other turkers; the planner on the other hand generated 45 critiques, and 7 were acted upon and
fixed by turkers. This seems to indicate that turkers consider the planner’s critiques more relevant
to the generation of a high quality plan than those suggested by other turkers. Even if we consider
alternate explanations (e.g. the critiques of the planner were received better as they were easier to
respond to), there is enough evidence to suggest that the presence of an automated system does help
to engage and guide the focus of the crowd.

6.2. Experiments outside Mechanical Turk

As mentioned earlier, because of the difficulties of running the plan assembling executable (described
in Section 5.4), on Amazon Mechanical Turk, we shifted to a stand alone platform to evaluate the full
version of AI-MIX with all planning capabilities (including plan assembling support). We limited
our comparison to the full fledged AI-MIX system, and an ablated version that removes the set of
features that, taken together, set AI-MIX maximally apart from the earlier work on crowd-sourced
planning (e.g. (Zhang et al., 2012; Law and Zhang, 2011)). These are:

– AI-MIX’s ability to do automatic subgoaling with its planner
– AI-MIX’s ability to provide verbal critiques of the turker plans
– AI-MIX’s ability to provide an activity plan that is scheduled on the timeline.

Accordingly, we developed an ablated system AI-MIX− that doesn’t have these capabilities, but is
otherwise identical to AI-MIX. This system doesn’t use the knowledge base of the domain which
was built based on the suggestions or critiques as in AI-MIX. Instead, the crowd creates a plan by
adding new suggestions, deleting and rearranging the existing suggestions. We compared AI-MIX−
to AI-MIX to understand the relevance and usability of the plans generated by both of these systems.

Experimental Setup

One important aim of our study is to measure how useful and executable the plans that are generated
by AI-MIX in real-life settings. To measure these metrics, we deployed another system as mentioned
above AI-MIX− and consider the plan generated by this system to the plan generated by AI-MIX.
We crowdsource both of these plans to obtain more accurate feedback from the humans on the
usefulness of these plans obtained. For this analysis, we deployed both the AI-MIX and AI-MIX−
systems on an independent server where anyone with a web url were given access to this system. We
shared this system with 21 graduate students from the computer science department who participated
in this experimental analysis. As mentioned, in this subsection we mainly focus on evaluating the
usefulness of the generated tour plan from AI-MIX in comparison with AI-MIX−.

AI-MIX− essentially focuses on generating plans by resolving the various quantitative and qualitative
constraints. This system allows workers to specify constraints on different attributes as shown below:

– on the number of activities in each category
– amount of time to spend on activities in each category
– preferred combination of activities in the plan
– time constraints that state the cumulative duration of the activities in the itinerary
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AI-MIX− provides a stream of suggestions on the interface where all the suggested activities are
present and the workers can view, edit and delete the existing activities based on their opinion. The
important missing factor here is that if one user modifies an existing activity, then it gets carried
on to the future workers. For example, if a worker chooses to delete an activity from this stream,
then there is no possibility to retrieve that deleted suggestion in AI-MIX−. Whereas, in AI-MIX
there is an option to modify an existing suggestion and the planner will decide to consider a given
suggestion if it improves the quality of the final plan. Both the systems accept the suggestions till all
the constraints are satisfied and there are no more concerns raised by any future worker.

In this study, both the systems ( AI-MIX , AI-MIX−) were made available to the participants who
didn’t receive any money3 for participating in this study. We used the tour planning scenario defined
in section 5 for a city in South West United States, which is a familiar city for all the workers who
were recruited. There are different ways that these workers contributed towards:

i. provide suggestions
ii. critique the existing suggestions

iii. vote on the best plan

The interface of the AI-MIX and AI-MIX− are both the same as shown in Figure 2. There are two
main tasks involved here –

– Task1 – provide suggestions or critique the existing suggestions
– Task2 – vote on the best plan

Out of the 21 workers, we had 10 workers work on the first task – Task1 and the rest of them to work
on Task2. We separated both of these groups of workers as these tasks cannot be performed parallely
if we want to understand the usefulness of the final plan. The interface for Task2 is as shown in
Figure 5.

Relevance of the Generated Plan

As mentioned earlier, we recruited 10 workers (we refer this set of workers as turkplangen) to work
on Task1 which is to measure the usefulness of the plans generated by the systems AI-MIX and
AI-MIX−. Subsequently, we asked the other set of 11 workers (we refer this set of turkers as turkvote)
to work on Task2 which is to vote on a plan that will be most useful for them based on the tour request.
This task mainly focuses on infering the quality of the plan in terms of relevance to the constraints
laid by the requester along with the usability of the plan. On average, each worker participated
in this experimental evaluation has given 2.4 suggestions for AI-MIX and 2.0 for the AI-MIX−
system. Users felt that both the systems were fairly easy to work with, and had no issues with the
interface while providing or critiquing the suggestions. The interface of the voting system is shown
in Figure 5. In this interface, the task description is shown on the left most side and both the plans
are shown on the right side of this interface. We can see the plan generated by AI-MIX followed
by the plan generated by AI-MIX−. Turkers can either vote for plan1 (generated by AI-MIX ) or
plan2 (generated by the AI-MIX−) which will be recorded for our analysis. We made sure that the

3The direction of whether the quality of completing the task is affected by the crowd’s incentives is another
research direction which is not the focus of this paper.
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– Plan1 Plan2
#of votes 7 4

Why this plan?

More organized
Clarity is much better
Better utilization of the day
I don’t need to think at all
Presented variety of activities to-do

Better flexibility in schedule
Not regimented

Table 3. Number of votes obtained by each system

turkers are not aware of the mapping between the plan and the system that generated this plan to
avoid biases.

Table 3 shows that plan1 was voted for by 63% of workers and the rest of workers chose plan2 which
is generated by the AI-MIX− system. Workers were asked why they chose a particular plan and the
list of answers are compiled in Table 3. We believe that humans tend to have similar preferences
which is the motivation to utilize the feedback obtained from the second set of users to evaluate the
quality and usefulness of the plan generated from both the systems.

Along with these formal evaluations, we have also demonstrated the AI-MIX system at both a
planning conference and a human computation conference. These “live” demonstrations involved
engaging demo visitors in “turker” role so they could experience the AI-MIX interface and the crowd
planning support it provides. The reception of the system in both venues was generally positive.
Indeed, the system was the recipient of the “People’s Choice Award for Best Demonstration” at the
planning conference.

6.3. Discussion

In the first set of experiments where we have different conditions of AI-MIX that we tested on
mechanical turk, we notice that AI-MIX is able to generate better quality plans which are more
detailed. The turkers are able to attend to the different critiques issued by the system with relative
ease (as shown by the HIT completion time). The other important measure of testing the quality
is to make sure the plan suggestions provided span across all the different types of activities the
requester has requested. This set of experiments addressed both the challenges of interpretation and
steering by utilizing the planning techniques. Automated planning techniques seem to provide a clear
additional advantage. As mentioned earlier, in terms of planning support, Mobi system corresponds
to the condition C2 in our framework (as it only supported constraint checking).

In the second set of experiments, AI-MIX is able to generate a very useful schedule that considered
different types of activities. One worker complained that the plan generated by the AI-MIX− system
mainly focused on food-related activities with a lesser focus on other activities. Even though plan2 is
very flexible and is not regimented, plan1 is more detailed and is better at utilizing the entire day
while being more organized. This shows that subgoal generation and critiquing at various levels to
generate a better detailed plan is very important. AI-MIX includes these features which helps in
generating better quality plans over the other types of systems. We know that there is incompleteness
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involved in the model and preferences and there is an impedance mismatch between the planner’s and
humans’ model. We can infer from these results that both of these issues were adequately handled
by utilizing the strengths of both machines (automated critiquing and subgoal identification) and
humans (providing plan suggestions and critiquing) to generate a better quality plan that considers
requester’s preferences into account. Though the current system uses only a preliminary form of
automated reasoning, this effort can be seen as the first step towards incorporating more sophisticated
methods for plan recognition and generation.

We consider that the approach we proposed as part of the system can be generalized to other
real-world domains under these two conditions:

i. When the partial model of the domain is provided by the designer.
ii. Turkers or workers are knowledgeable about the domain that is under consideration are

available.

7. CONCLUSION

In this paper, we presented a system, AI-MIX, that is a first step towards using an automated
planner in a crowdsourced planning application. We identified two major challenges in achieving
this goal: interpretation and steering. We then described the framework of AI-MIX, and showed
how these challenges were handled by our system – using forced structure and structure extraction
for interpreting actions; and using constraint checking and automated planner critiques for steering.
We also presented empirical results over the tour planning domain in two different experimental
setups, and showed that using an automated planner results in the generation of better quality plans.
Interestingly, it is possible to improve the completeness of the domain model of a planner over time.
Considering this, as a future work we are interested to see if the existing work on learning domain
models (Yang et al., 2007; Tian et al., 2016) can be adapted to allow learning from observing the
plans suggested by the crowd. We are also interested in eliciting information (Kaplan et al., 2013)
from the crowd in order to go from the current list of activities that are produced as the result of the
crowd’s planning process, to a more structured plan in the traditional sense of the word.
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