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ABSTRACT

Crowdsourcing involves employing a large number of workers, creating HITs (Human Intelligent
Tasks), submitting them to a crowdsourcing platform and providing a monetary reward for each
HIT. One of the advantages of using crowdsourcing is that the tasks can be highly parallelized; that
is, the work is performed by a high number of people in a decentralized setting. The design offers
means to cross-check the accuracy of the answers by assigning each task to more than one person,
thus relying on majority consensus and rewarding the workers according to their performance and
productivity. However, since each worker is paid per task, the costs can significantly increase,
irrespective of the overall accuracy of the results. Thus, one important question when designing
such crowdsourcing tasks is whether we can estimate apriori - before launching the experiment -
how many workers to employ and how many tasks to assign to each worker when dealing with
large amounts of tasks. Therefore, we aim to answer the main research question: Can we a-priori
estimate optimal workers and tasks’ assignment to obtain maximum accuracy on all tasks?” We
posit that realistic synthetic data generation can tackle these issues in practice. We introduce a two-
staged statistical guideline, CrowdED, for optimal crowdsourcing experimental design to estimate
optimal workers and task assignments through simulations to obtain maximum accuracy for
crowdsourcing tasks. We describe the methodology, evaluate it considering real-world
experiments, and show that the method performs better than a random selection of values.

1. CROWDSOURCING EXPERIMENTS

Crowdsourcing involves employing a large number of workers, creating HITs (Human Intelligent
Tasks), submitting them to a crowdsourcing platform and providing a monetary reward for each
HIT (Howe, 2006). The tasks primarily rely on basic human abilities and natural language
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understanding but less on acquired skills such as domain knowledge. A significant share of the
tasks addressed via microtask platforms like Amazon Mechanical Turk' (MTurk) could be called
‘routine tasks’ recognizing objects in images, transcribing audio and video material and text editing.

One of the advantages of using crowdsourcing is that the tasks can be highly parallelized; that is,
the work is performed by a high number of workers in a decentralized setting. The design offers
means to cross-check the accuracy of the answers by assigning each task to more than one person,
thus relying on majority consensus and rewarding the workers according to their performance and
productivity. However, since each worker is paid per task, the costs can significantly increase on a
large scale, irrespective of the overall accuracy of the results. Thus, one important question when
designing such crowdsourcing tasks is whether we can estimate, before launching an experiment,
how many workers to employ and how many tasks to assign to each worker when dealing with
large amounts of tasks. How do we optimally design the task so that the right combination of
workers and tasks can produce the maximum accuracy, and can we determine this number apriori?

There have been studies that employ different methods such as active learning (Mozafari et al.,
2014), test or gold standard questions to test worker aptitude (Hassan et al., 2016), self-reporting
by workers of their knowledge or skills for the particular task (Ul Hassan et al., 2013) or on-the-fly
optimization algorithms (Goel et al., 2017) for determining the optimal number of workers per task.
However, reportedly, these are extremely expensive to adapt in a real-world experiment or only
apply during or after executing a crowdsourcing experiment. This is where CrowdED contributes
via apriori, through simulations, providing the optimal number of workers per task before launching
the actual experiment, thus helping reduce costs. CrowdED, at the moment, only simulates Multiple
Choice Questions (MCQs) type of tasks where the worker has to choose a single value from a given
set of choices. In order to determine the number of workers and tasks that would be ‘optimal’ to
solve the problem, we propose CrowdED, a two-staged Crowdsourcing Experimental Design. We
aim to answer the main research questions: Can we a-priori estimate optimal workers and tasks’
assignment to obtain maximum accuracy on all tasks?

The contributions of this paper are:

— 4 stand-alone modules that can be executed independently to simulate a crowdsourcing
experiment

— CrowdED methodology and function to simulate the two-staged experiment

— evaluation of CrowdED via simulations and a real-world experiment

— open-source code, available as a Python library, executable in a Jupyter notebook”. The library
builds on the CrowdExperiments code (Zaveri et al., 2018).

!https://www.mturk.com/
2 https://www.github.com/MaastrichtU-IDS/crowdED
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2. CROWDED METHODOLOGY

This section describes the rationale behind the simulation of a crowdsourcing experiment and
details of the two-staged statistical design. Next, we describe the 5 stand-alone modules and the
methodology in the following sections. In order to analyze the optimal parameters in a
crowdsourcing experiment, a significant sample of tasks and many real-world experiments would
be needed. However, this is expensive to perform on a large scale. Therefore, we propose
generating a crowdsourcing experiment in a statistically reliable but synthetic way. In this way, the
parameters can be analyzed via simulations, and ultimately, the proposed hypothesis can be tested.
The algorithm is implemented in Python 3.7 and openly available ‘crowdED”*.

To ground our hypothesis on real-world experiments and determine default values in CrowdED,
we chose parameters from 10 experiments available in online repositories* to perform simulations.
These 10 experiments were selected because they represent multiple-choice questions (MCQ), the
kind of experiments that CrowdED simulates. Secondly, the parameter (total no. of tasks, workers,
no. of gold standard questions, workers per tasks, no. of categories) values also spanned a wide
range of values (e.g., 200 tasks to 98000 tasks). Some experiments contained multiple microtasks.
In those cases, we took only one. In some others, the overall accuracy was not reported. Thus, we
calculated it using the gold standard tasks. We used these values to infer an informed accuracy
value for an MCQ crowdsourcing experiment. This accuracy also calculates the alpha and beta
parameters to feed into the CrowdED methodology as default values (as explained in the next
section). Details of all the experiments are in Table 3.

2.1 Modules to Generate a Synthetic Crowdsourcing Experiment

The first problem to solve is to create an automated method to generate a synthetic experiment that
reflects a real-world crowdsourcing experiment using the power of statistical modelling. To
complete this task, we implemented 4 independent modules focusing on different functionalities
and the CrowdED function that combines them, as depicted in Figure 1. The modules are:

— Tasks Generation Module: a module that generates a synthetic list of N desirable tasks

— Workers Generation Module: a module that generates a synthetic list of workers where each
worker has a unique probability of carrying out a task; which is selecting one out of n elements in
a multiple-choice question.

— Task-Worker Assignment Module: 1t assigns workers to tasks without tasks repetition

— Worker Inference Module: It infers the workers' answers and selects the best workers

— CrowdED function: a module that simulates the 2 stages experiment; takes in the requester's
input values and generates the data frame with tasks, workers and worker answers along with each
worker's performance and calculates the overall expected accuracy

® https://www.github.com/MaastrichtU-IDS/crowdsourcing-experiments
4 https://www.data.world/crowdflower, https://www.figure-eight.com/data-for-everyone/,
https://www.dbgroup.cs.tsinghua.edu.cn/ligl/crowddata/
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We also explain the calculation of accuracy measures to assess the workers' performance and tasks.
Note that the the crowdED® python library must be installed to run these modules.

To illustrate the modules, we use a running example from an existing crowdsourcing experiment
of quality assessment of GEO metadata (Zaveri & Dumontier, 2017). The parameters for this
experiment were: total tasks = 1643, total workers = 145, workers per task = 3, number of
categories = 9, and overall accuracy = 0.93.

2.1.1 Tasks Generation Module

This module generates a synthetic list of tasks, where a task selects one out of n elements in a
multiple-choice question. Given that there is no prior knowledge experiment's task nature, the
probability that each task is answered correctly follows a Uniform distribution between 0 and 0.5
for hard tasks and 0.5 and 7 for easy tasks.
Hard Task ~U (0, 0.5) Easy Task ~U (0.5, 1)

Including the characterization of two types of difficulty (easy and hard) provides an additional
parameter to the analysis that a requester can specify. However, this value is not mandatory; by
default, the value is 0, meaning that all tasks are easy. This module proposes that each simulated
experiment be unique, for which the UUID library® is used to generate unique identifiers for each
task randomly.

@ Task Generation Module

Task ID True Task Task
answer | Label |Probability

@ Task-Worker Assignment Module @ Worker Inference Module

Task ID | True Task Task Worker | Worker
answer | Label |Probability| ID |Probability

Worker
Performance|

@Worker Generation Module

Worker Worker
ID Probability,

CrowdED Function
(total_tasks, total_workers, proportion_of_tasks_to_train, workers_per_task,
ber_of _valid_; 's)

Figure 1. Overview of the four stand-alone modules and the CrowdED function.

5 Ipip install crowdED pycm shortuuid
6 https://www.github.com/skorokithakis/shortuuid
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The requester chooses the number of tasks desired corresponding to the experiment to simulate.
The requester also has the option to select the number of valid answers for the experiment.
However, this value must be odd. The module will choose terms from a random bag of words based
on the number of correct answers. See, the categories generated at random are shown in Table 1.

bundles data generations
thirty limitation yarn
dentent | advertisement | materials

Table 1. Randomly generated nine valid answers.

The module generates the desired number of tasks with unique identifiers, and in the same way
generates the gold standard response for each task. This module can be executed by the following
script. For example, Table 2 shows an output as a result of executing it.

import crowded.simulate as cs

#define your parameters
total_tasks = 415
p_hard_tasks = 0.4
number_of_valid_answers = 3

#create task dataset
df_tasks = cs.Tasks(number_of_valid_answers).create(total_tasks, p_hard_tasks)

task_id true_answerdabel_task prob_task
task_E7xpdJTXNAQv bundles easy_task 0.89
task_L.6qC6KcDnBca data easy_task 0.98

task_adud4Y8gyrgKP  bundles easy_task 0.95
task_X6eJPEofGKf8  generations easy_task 0.65
task_9el.zZASnVhraq  generations easy_task 0.59

Table 2. First 5 of 1643 rows of the Tasks Generation Module output with each task having a
different probability score.

2.1.2 Workers Generation Module
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In this module, we calculate the probabilities of each worker getting an answer right. Since the
workers' ability is unknown before the task is undertaken, we use a beta distribution to model the
probability of the ability. It has been shown that the binomial beta model should be used for any
experiment where humans have to answer an MCQ (SHAKIL, 2009). For example, this paper uses
this binomial beta model specifically for crowdsourcing tasks to model the worker's ability (Fox,
2008). We reuse the probability density function (Goto et al., 2016). The probability density
function f(x|a, v) is given by:

fxla,v) = Beta( a (1-a) )

min(a,1 — a) v’ min(a,1 —a)v

Here a € (0,1) isthe normalized value of the average ability of the workers in the crowdsourcing
experiment; v € (0, 1) isa parameter that determines the variance in worker ability. To determine
the default values of alpha and beta, representing the worker distribution of an MCQ crowdsourcing
experiment, we calculated them from the 10 real-world datasets listed in Table 3. Based on these
values (n=10), we calculated alpha = accuracy *n =0.76 * 10 = 7.6 and beta = n- alpha=10- 7.6
= 2.3. Thus, the default values are alpha = 7.6 and beta = 2.3.

The following script can execute this module. For example, Table 3 shows output as a result of
running this module.

No. of
Total no. Total no. gold No. of No. of Overall
Dataset of workers .
of tasks standard categories accuracy
workers . per task
questions

Fashion 10000 (Loni et
al., 2014) 24457 1470 - 3 3 0.942
Sentiment Popularity
(VENANZI et al.,
2015a) 10000 5000 10000 20 2 0.893
Weather Sentiment
(VENANZI et al.,
2015b) 6000 300 6000 5 5 0.704
Query Document
Relevance (Yilmaz et
al., 2008) 98453 766 98453 5 2 0.408
Wikipedia image
categorization
(Wikipedia, 2019) 984 - 34 3 5 0.896
Company
categorizations
(crowdflower, 2019) 7335 - 183 3 6 0.818
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Hate speech

identification

(Davidson et al., 2017) 24783 54 2 0.563

Dbpedia quality —

datatypes (KIT, 2019a) 850 31 341 2 0.470

Dbpedia quality -

object values (KIT,

2019c¢) 509 35 509 2 0.890

DBpedia quality —

interlinks (KIT, 2019b) 223 31 223 2 0.940
Mean 0.760

Table 3. Real-world crowdsourcing experimental values, which we used to determine the value
of the beta parameters

2.1.3 Task-Worker Assignment Module

This module ensures fair assignment of workers to the tasks listed, with the condition that no worker
should repeat a task. To assign tasks, it starts by taking a task, and k£ workers are selected to answer
that question, where k is the number of workers per task. Next, the workers are chosen randomly
without replacement from the list of workers previously created, resulting in k different workers
for each task. This process is repeated until the N number of tasks listed in the tasks table are
assigned. Then, as a result of randomization, workers are given different tasks, just as in a real

crowdsourcing experiment. These assignments will form a final table of size kN, i.e. number of

workers per task (k) multiplied by the number of tasks (N). This module can be executed by the
following script. For example, Table 4 shows an output as a result of executing this module.

import crowded.simulate as cs

#create task assignment

df_tw = cs.AssignTasks(df_tasks, df_workers, wpt).create()

2bPFmZW8Pq6h

task_id worker_id true_answers label task prob_task prob_worker
task 3GQs5ptNSUVU  7yLqPhe7Tlty yarn easy task  0.99 0.69135
task 3GQsS5ptNSUVU MnCuNgyMqzbT yarn easy task  0.99 0.805523
task 3GQsS5ptNSUVU yarn easy task  0.99 0.697745
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task JDByzAtMpLhT  Ccv2aKc9r95p thirty easy task  0.92 0.597253

task JDByzAtMpLhT  RuiH3eBUzcHU thirty easy task  0.92 0.676876

Table 4. First 5 rows of all combinations of the Task-Worker Assignment Module output, each
worker having a different probability of getting the answer right, which is modeled using the
binomial-beta distribution.

2.1.4  Worker Inference Module

Inferring the workers’ answer. In this module, the workers’ answer is inferred using Bernoulli’s
probability density function using a prior conditional probability. Each combination in the resulting
table from the worker generation module corresponds to a different probability for each event.
Because these are related events, we proceed to use the conditional probability based on Bayes’s
theorem’. Let the random event T a worker to have the knowledge to answer a task, and the random
event w a worker to answer correctly, then P(w | 7), is the conditional probability of a worker
responding correctly given that she has the knowledge of answering the given task. The formula is
based on the expression P(B) = P(B|A)P(A) + P(B|A°)P(A€) which states that the probability
of event B is the sum of the conditional probabilities of event B given that event 4 has or has not
occurred. Bayes’s formula for this case is defined as follows:

P(T|w)P(w)
P(TIw)P(w) + P(T|w€)P(w¢)

Pw|T) =

It is important to note that the probability P(T|w€) is the probability of the event of responding
without knowing the answer. This probability corresponds to a random decision between the
options. In a MCQ, this means that if a worker does not know the answer, the chances of answering
a question correctly with n options is P(T|w¢) = 1/n.

The conditional probability is computed for the kN times. This probability of each combination
serves as a prior probability to finding the answer that each worker will generate. Based on this
logic, we define a random variable X ~ Bernoulli(p) distributed, where p is the conditional
probability explained above, given that each worker-task event has a different probability.
Bernoulli’s probability density function is calculated for all cases. As a result, each combination
will be assigned a value of success or failure. Since we simulate MCQs for success, the value of
the corresponding response is the same as that of the gold standard. In the case of failure, the

7 https://plato.stanford.edu/entries/bayes-theorem/
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corresponding value is a random selection of the n — / remaining valid answers. This module can
be executed by the following script. For example, Table 5 shows an output as an execution result.

#compute probability
cp = cm.ComputeProbability(x, y, z)

#define the parameters

g = df_tw['true_answers'] #vector of gold standard answers

p = cp.predict() #binary vector of @ and 1

z = df_tasks['true_answers'].unique() #vector of valid answers in the experiment

#compute match

worker_answer = cm.WorkerAnswer(g, p, z)

#add the answers to the assignation dataset
df_tw[ 'worker_answers'] = worker_answer.match()

task id worker id true label prob prob worker .
- - answers task task  worker answers inference

task 22By4uYxvA6u hwY3hLriq7R4 . easy task  0.95 0.996099 materials 1
materials

task 22By4uYxvA6u d36AYErUttLF . easy task 095 0.952213 materials 1

— materials -

task 22By4uYxvA6u  HAIiS5FFnBtQe . easy task 0.95 0.997918  materials 1
materials

task 24aKhL7YT7hM  mYj9wgdDcPwC  yarn easy task 0.82  0.982841 yarn 1

task 24aKhL7YT7hM  6YYvoDyCwga6  yarn easy task 0.82 0.935455 generations 0

Table 5. First 5 row of the table assigns the best workers to the remaining tasks and computes
the inference from the Worker Inference Module

This module is essential for the quantitative analysis of the methodology since its objective is to
calculate a performance measure for each worker and, in this way, select the best workers in a
crowdsourcing experiment. It is essential to score the workers to demonstrate the hypothesis that
trained workers on a portion of the tasks will obtain better accuracy. A workers' aggregation is
carried out, summarizing the number of correct tasks and the number of tasks in total. The
performance measure is the proportion of the correct answers over the total tasks. After this, a
characterization is made where only those workers are selected with a measure of accuracy above
average performance of all workers whose failures to respond correctly have been 0 or /. An
example is shown in Table 6.



38 A. Zaveri, P. Hernandez Serrano and M. Dumontier / Human Computation (2024) 11:1

worker_id prob_worker
2XYfi2sDkupf 0.965502
2bPFmZW8Pq6h  0.984682
YXBKKNZaLPP8 0.995149
WhEZYPp57f7Tm  0.990698
UwyUN7ufTkfh 0.997898

Table 6. First 5 rows of the table with the best workers after assessing the performance

2.1.5 Accuracy Calculation

After the entire experiment is simulated along with the worker's answers, the next step is
calculating the accuracy of the tasks. To do this calculation, we use the PyCM library (Haghighi
et al., 2018) . PyCM?® is a multi-class confusion matrix library written in Python that supports
input data vectors and direct matrix and a tool for post-classification model evaluation that
supports most classes and overall statistics parameters. PyCM is the swiss-army knife of
confusion matrices with a broad array of metrics for predictive models and an accurate evaluation
of a large variety of classifiers. As a result of this module, the overall accuracy of the tasks is
obtained. The following script can execute the evaluation

from pycm import *
g = df_tw['true_answers'] #vector of gold answers
a = df_tw[ 'worker_answers'] #vector of inferred answers

#compute confusion matrix
cm = ConfusionMatrix(list(g), list(a))
print(cm.Overall_ACC)

> 0.9395

The accuracy computed with the CrowdED module is close to the actual accuracy of the real-
world experiment 0.93.

2.2 The CrowdED function

The previously described modules are combined in the CrowdED methodology, which consists of
2 Stages. In Stage 1, the requester has the option to configure the following variables that represent
her assumptions: No. of tasks, No. of workers, Proportion of hard tasks (optional, default 0,
meaning all are easy tasks), Proportion of tasks to train, No. Of workers per task, the number of
valid answers and alpha (optional) and beta (optional).

8 https://www.github.com/sepandhaghighi/pycm
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Then, based on the requester's input values, the data frame with tasks, workers and worker answers
are simulated, and each worker's performance and overall accuracy are calculated.

This method aims to produce an entire experiment combining the 5 modules discussed in one
function. The experiment's output is a table with the results, similar to a results table in any
crowdsourcing platform.

At the end of Stage 1, we get:

— Poor workers, those that did not achieve high consensus amongst other workers performing the
same task

— These workers are flagged and not chosen for Stage 2

— Best workers are those with a good performance and are assigned the best worker status

— These workers are selected for Stage 2

— The total number of tasks minus the Proportion of tasks to train

— These unassigned tasks are assigned to the best workers

In Stage 2, the best workers get assigned the unassigned tasks, the workers' answers are simulated,
and the task accuracy is calculated. Finally, the tasks from Stages 1 and 2 are merged, and the
accuracy of all the tasks is calculated.

For example, considering the sample dataset generated earlier, we assess the performance and get
the 'best workers'. Next, we assign the 'best' workers to the remaining tasks. Then, we compute the
workers' performance on the rest of the tasks. Finally, we calculate the accuracy of the simulated
experiment at the end of the 2 stages, which is 98.01% (higher than the accuracy obtained in Stage
1 and the real-world experiment of 0.83).

3. EXPERIMENTS AND RESULTS

We evaluated our methodology by re-executing two existing real-world experiments in the Amazon
Mechanical Turk (MTurk) crowdsourcing platform using CrowdED's two-stage approach. These
experiments were chosen since they differ in task nature, the total number of tasks, and the overall
accuracy obtained. The values for each of the variables for the two experiments are reported in
Table 7. The two experiments are:

— MetaCrowd: This crowdsourcing experiment assesses the biomedical metadata quality of the
Gene Expression Omnibus (GEO) dataset (Zaveri and Dumontier, 2017). The /643 tasks classified
the provided "Term" into one of the eight listed categories (the ninth being 'l don't know). The
overall accuracy obtained for these tasks was 0.93.

— Language: This crowdsourcing experiment is a language verification task for five languages.
There are 25 tasks where the worker is shown text and the language and has to verify whether the
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text is in the specified language. There are three options to choose from: 'Correct’, 'Incorrect’ and
' don't know'. The overall accuracy obtained for these tasks was 0.86.

In MTurk, we used the feature of assigning custom "Qualification Types" to the workers. This
captures the notion of differences among workers and that non-answered questions fall into the
hard tasks on the aggregate. After running an experiment, one can create a custom qualification
type (e.g. 'best workers) and assign each worker to this type with a score ranging from 0 to 100.
Then, when a new experiment is launched, one can use this qualification type as a criterion in the
“Worker Requirements”.

We first performed a grid search in CrowdED using the fixed values from the experiments, as
reported in Table 8, to determine the recommended values for each variable. For the total number
of tasks, the grid search was from /0-200 and 10-100 for the MetaCrowd and Language
experiments, respectively. For the proportion of tasks to train, the grid search was set from 0% to
99%, and the number of workers was set in the range of [3, 5, 7, 9, 11, 13, 15, 17, 19] for both
experiments. There were 3078 and 3420 simulations performed, which took 2 hours and 14 minutes
for the MetaCrowd and Language experiments, respectively.

Total no. of Proportion of No. of workers Accuracy 2

Dataset workers tasks to train per task stages

MetaCrowd 120.76 (SD 49.03)  0.324 (SD 0.147) 10.611 (SD 5.112)  0.968 (SD 0.015)

Language 66.886 (SD 22.783)  0.474 (SD 0.216)  9.634 (SD 4.994)  0.941 (SD 0.029)

Table 8. CrowdED recommended values for the real-world experiments

Based on the recommended values, we executed the two experiments in MTurk. For the
MetaCrowd experiment, in Stage 1, an accuracy of 79% was achieved for 525 (32% of total tasks)
tasks with 10 workers per task and a total of 207 workers. For the Language experiment, in Stage
1, an accuracy of 96% was achieved for /1 (47% of total tasks) tasks with 9 workers per task and
a total of 27 workers. The performance of each worker was calculated as the total number of tasks
that the worker answered correctly (concerning the gold standard) divided by the total number of
tasks that the worker did. We then calculated the median from all the workers' performances, which
was the threshold. All workers above this threshold were assigned the 'best workers' qualification
and were chosen for Stage 2. The thresholds were (.84 and 1 for the MetaCrowd and Language
experiments, respectively. Based on this threshold, 94 and /6 workers were chosen for Stage 2.
Workers who only performed one task and scored above were not selected for Stage 2.

We then executed Stage 2 with the remaining tasks and only chose the workers assigned the 'best
workers' qualifications. We achieved an accuracy of §4% and 98% for MetaCrowd and Language
tasks in Stage 2, which was higher than that of Stage 1. Interestingly, for the MetaCrowd
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experiment, the overall accuracy was lower than the original real-world experiment in Stage 1.
However, in comparison, the accuracy in Stage 2 was significantly higher than in Stage 1 in the re-
run. After the evaluation experiments in Stage 2, the overall accuracy was lower than the real-world
experiment, which we argue with the fact that the total cost was lower than the original experiment.
For the Language experiment, the overall accuracy in Stage 2 was higher than in Stage 1 and
significantly higher than in the real-world experiment. The cost was slightly higher than the original
experiment, and we argue that the accuracy was significantly higher in the re-run. Table 9 reports
the values for the real-world experiment results for the 2 Stages based on the CrowdED
recommended values.

no.
Dataset of workers workers Stage 1 Stage best Stage2  Stage  Total
tasks  Per task accuracy 1cost workers accuracy 2 cost cost
0, 0
MetaCrowd | 1643 10 201 79% $262.50 94 86% 167.85 430.35
Language 25 9 21 96% $4.95 16 98% 3.6 8.55

Table 9. Results for the real-world experiments for the 2 Stages based on CrowdED
recommended values

4. RELATED WORK

Several empirical studies have determined the ‘optimal’ number of workers per task based on the
quality of workers (Carvalho et al., 2016) or by studying different scenarios of the increasing
complexity of tasks concerning worker quality (Sheng et al., 2008). Several models (Iren & Bilgen,
2014), (Dai et al., 2013), (Gao & Parameswaran, 2014), (Goel et al., 2017) provide approaches for
cost-quality and cost-time optimization, respectively. Another strategy employed active learning
algorithms (changing the assignments per task in real-time) to minimize the number of questions
asked to the crowd to maximize the number of tasks (Mozafari et al., 2014). On the other hand, (Ul
Hassan et al., 2013) and (Gadiraju et al., 2017) proposed approaches of self-rating by workers in
combination with using gold-standard tasks for estimating the expertise of workers. However, the
self-assessment does not always ensure high accuracy on the actual tasks. However, in these studies
the estimated optimal number is defined solely in terms of expected errors in the aggregated output;
it is assumed that all workers are of the same quality; and are extremely expensive to adapt in a
real-world experiment.

2

In (Ho & Vaughan, 2012), the authors propose a Dual-Task Assigner algorithm, which estimates
unknown worker skill levels and assigns heterogeneous tasks to online arriving workers based on
the estimation. In (Chen et al., 2013), the authors formulate the budget allocation problem in
crowdsourcing into a Markov Decision Process and characterize the optimal policy using dynamic
programming. Recently, the CrowdTruth methodology (Dumitrache et al., 2016) has been
developed consisting of quality metrics for evaluating the example (input) data, crowd annotators
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and their resulting annotations, which aims to provide valuable insights about the task design,
annotation clarity, or annotator quality. However, these methods are applicable either during or
after the task. Additionally, these studies either require that the pay be set based on the progress of
the total number of tasks or that the number of workers is high, which can get expensive on a large
scale.

MTurk and Figure Eight typically recommend reserving 10 - 30% of their tasks for “gold” test
questions, whose answers are known and then dismissing workers who fail a disproportionate
percentage of these tasks. Our results correspond to these recommendations. However (Bragg et
al., 2016) argue that this policy may waste valuable budget and instead propose a model that (i)
tests workers to determine their accuracy and (ii) getting work performed by good workers
formulated as a partially-observable Markov decision process (POMDP). Then reinforcement
learning over the POMDP is applied to dynamically improve the given base policy with experience.
Another study (Fan et al., 2015) proposed iCrowd for on-the-fly estimation of the accuracies of a
worker by evaluating her performance on the completed tasks and predicting which tasks the
worker is well acquainted with. Finally, (Kobren et al., 2015) showed that setting goals dynamically,
in conjunction with a reasonable allocation of tasks, increases the amount of information collected
by the crowdsourcing system by up to 249%. However, the main drawback of these methodologies
is that they can be expensive when implemented in the real world. CrowdED is distinct from all
these studies as it offers a two-staged statistical model that can apriori, via simulations, estimate
the number of workers assigned per task to gain maximum accuracy.

5. CONCLUSION

In this paper, we described a two-staged statistical guideline, CrowdED, for designing
crowdsourcing tasks to estimate optimal workers and tasks’ assignment apriori to obtain maximum
accuracy on all tasks. CrowdED allows a requester to apriori simulates the ‘optimal’ values for
each variable, thus reducing costs. CrowdED is open source, implemented in Python and can be
executed in Jupyter notebooks. Furthermore, the 4 modules and the CrowdED function can be
executed independently. We evaluated our proposed method by re-executing two real-world
experiments using CrowdED recommended values and showing that we achieved higher accuracy
and reduced costs compared to a random selection of values. Furthermore, we show that a two-
stage methodology in crowdsourcing experiments leads to better overall experiment accuracy.

The current limitation of CrowdED is that it only simulates experiments with multiple-choice
questions where the task is to choose one out of n valid answers. The method will not work for
subjective questions or descriptive tasks where correct answers can be highly variable. We have
used ten real-world experiments to define the apriori probabilities to feed the method. Within the
scope of this paper, we do not compare it with other methods since a crowdsourcer usually has
randomness as a baseline in a real scenario. Nevertheless, we posit that realistic synthetic data
generation can tackle these issues in practice.
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In future work, we will account for the optimisation algorithm's budgetary constraints and various
parameters (e.g., hard tasks) and perform further simulated and real-world evaluations. Furthermore,
we aim to extend CrowdED further to be able to simulate and recommend other types of
crowdsourcing tasks (e.g. multiple answers in MCQs). Also, we will implement an interface such
that a user can vary parameters and assumptions.
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