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ABSTRACT 
Camera traps - remote cameras that capture images of passing wildlife - have become a 
ubiquitous tool in ecology and conservation. Systematic camera trap surveys generate ‘Big Data’ 
across broad spatial and temporal scales, providing valuable information on environmental and 
anthropogenic factors affecting vulnerable wildlife populations. However, the sheer number of 
images amassed can quickly outpace researchers’ ability to manually extract data from these 
images (e.g., species identities, counts, and behaviors) in timeframes useful for making 
scientifically-guided conservation and management decisions. Here, we present ‘Snapshot Safari’ 
as a case study for merging citizen science and machine learning to rapidly generate highly 
accurate ecological data from camera trap surveys. Snapshot Safari is a collaborative cross-
continental research and conservation effort with 1500+ cameras deployed at over 40 protected 
areas in eastern and southern Africa, generating millions of images per year. As one of the first 
and largest-scale camera trapping initiatives, Snapshot Safari spearheaded innovative 
developments in citizen science and machine learning. We highlight the advances made and 
discuss the challenges that arose using each of these methods to annotate camera trap data. We 
end by describing how we combined human and machine classification methods (‘Crowd AI’) to 
create an efficient integrated data pipeline. Ultimately, by using a feedback loop in which humans 
validate machine learning predictions and machine learning algorithms are iteratively retrained on 
new human classifications, we can capitalize on the strengths of both classification methods while 
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mitigating their weaknesses. Using Crowd AI to quickly and accurately ‘unlock’ ecological Big 
Data is revolutionizing the way we take on critical environmental issues in the Anthropocene era.   
 
 

1. CAMERA TRAP ‘BIG DATA’ IN CONSERVATION - OPPORTUNITIES AND 
CHALLENGES 

The Earth is currently undergoing extreme human-driven biodiversity loss, with devastating 
impacts on the functioning of ecological systems (Barnosky et al., 2011). In the current extinction 
crisis, collecting and analyzing Big Data is critical for identifying global biodiversity trends and 
diagnosing drivers of wildlife decline (Jetz et al., 2012; Stephenson et al., 2017; Kays et al., 
2019). Technological advances are transforming our ability to rapidly gather massive quantities 
of high-resolution ecological data at unprecedented spatial and temporal scales (Rich et al., 2017; 
Steenweg et al., 2017). Remote (e.g., satellite) and in situ (e.g., camera traps, biologgers) sensors 
allow monitoring of entire wildlife communities across large areas and over long time periods 
(O’Connell et al., 2010; Wearn & Glover-Kapfer, 2017). While this information is vital for 
management and conservation, the rate of accumulation quickly outpaces researchers’ abilities to 
extract the necessary data from collected information on timescales necessary to effectively 
understand and protect wildlife populations (Ahumada et al., 2019). 
  
Camera traps have emerged as a popular tool in ecological research, enabling systematic 
collection of spatial and temporal information on wildlife community dynamics (O’Connell et al., 
2010). These remote cameras are automatically triggered by passing animals, unobtrusively 
collecting data on the abundance, distribution, and behavior of medium- and large-bodied 
vertebrates. Each camera trap trigger generates a photographic record that includes the date, time, 
and location of the animal observation. Recent technological innovations have improved camera 
trap capabilities while lowering costs, leading to an exponential increase in the number of camera 
trap studies (Burton et al., 2015). While camera trap use has grown, a major obstacle to 
harnessing their full potential is the substantial time and effort involved for researchers to 
manually annotate each image (Ahumada et al. 2019). Even an average-sized survey (~78 camera 
traps; Steenweg et al. 2017) produces tens to hundreds of thousands of images over a 12-month 
period, which can take a research team months of dedicated work to classify (Ahumada et al., 
2019; Glover-Kapfer et al., 2019). This image annotation bottleneck severely limits the 
usefulness of these data to address rapidly-changing local and global challenges.  
  
Here, we present a case study of how citizen science and machine learning (ML), independently 
and, ultimately, combined created new opportunities for efficiently processing Big Data 
generated by one of the world's largest camera trapping initiatives. ‘Snapshot Safari’ 
(www.snapshotsafari.org) is a collaboration between dozens of standardized wildlife monitoring 
surveys across eastern and southern Africa. This network produces vast quantities of image data 
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at a continent-wide scale, analysis of which drives scientific discovery and conservation policy. 
As one of the first large-scale camera trap projects, Snapshot Safari has been at the forefront of 
developments in citizen science (Swanson et al., 2015, 2016a,b; Hines et al., 2015; Kosmala et 
al., 2016), ML (Villa et al., 2017; Norouzzadeh et al., 2018; Tabak et al., 2019; Willi et al., 2019), 
and now, the powerful integration of human and machine classifications into a single pipeline, 
what we term ‘Crowd AI’. We outline our successes using citizen science and ML to process 
camera trap images within the quick timeframe necessary to address critical conservation issues 
and describe the barriers we encountered employing each of these methods independently. We 
end by detailing the assimilation of both annotation techniques in our current pipeline and 
highlighting current challenges and new opportunities presented by using Crowd AI to process 
ecological data from camera trap images. 

2. SNAPSHOT SAFARI - PROJECT DESCRIPTION AND AIMS 
Substantive conservation science increasingly relies on trans-national collaborations to 
understand the drivers for global wildlife decline (O’Brien et al., 2010; Hampton et al., 2013) and 
standardized sampling over multiple sites allows direct comparison of the ecological and 
anthropogenic factors shaping animal communities at regional, continental, or even global scales 
(Rich et al., 2017; Steenweg et al., 2017). Snapshot Safari began as a single camera trap survey in 
Serengeti National Park, Tanzania, in 2010 (‘Snapshot Serengeti’; Swanson et al., 2015, 2016a) 
and has grown into a collaborative effort managing surveys run in conjunction with 30 partner 
organizations across six African countries. Camera trap monitoring within each protected area 
provides continuous, fine-scale data on mammal and bird species >1 kg (O’Connell et al., 2010; 
Wearn & Glover-Kapfer, 2017). Data generated by Snapshot Safari are being used by 
government agencies, conservation organizations, protected area managers, and academic 
institutions to understand patterns of wildlife movement, behavior, and interactions and to 
examine how these trends change across environmental gradients and in the face of 
anthropogenic perturbations (e.g., Anderson et al., 2016; Swanson et al., 2016b; Palmer et al., 
2017, 2019; Allen et al., 2018; Palmer & Packer, 2018; Muzena et al., 2019). 
 
In the Snapshot Safari network, over 40 permanently-deployed camera trap surveys (totaling 
~1500 individual cameras as of 2020) generate in excess of three million images every year. At 
each site, cameras are laid out in systematic 5-km2 grids and positioned to maximize the 
likelihood of observing medium- and large-sized vertebrates (see Swanson et al., 2015 for details 
on survey design). Each camera is programmed to take a ‘capture event’ – a series of three 
quickfire images when motion and heat sensors are triggered during the day and a single image at 
night. These individual surveys operate continuously, monitoring expanses of up to 1400-km2, 
and are intended to run for a decade or longer. In the following sections, we work through the 
successes and challenges encountered while developing the Snapshot Safari platform.  
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3. FIRST HURDLE: OVERCOMING DATA PROCESSING BOTTLENECKS 
THROUGH CITIZEN SCIENCE 

‘Citizen science’, the colloquial term for the involvement of non-professionals in scientific 
research, has played a key role in environmental research for centuries (Lepczyk et al., 2009). 
Technological advances over the past few decades have proliferated the number and diversity of 
projects citizen scientists can participate in, either as data contributors, processors, or analyzers 
(Shirk et al., 2012; Kosmala et al., 2016; Watson & Floridi, 2018). In particular, the advent of 
online citizen science now allows millions of participants to advance scientific research by 
classifying (predominantly) image, video, or audio information, enabling ecologists to gather and 
utilize data on a scale that would be infeasible without crowdsourcing (Bonney et al., 2014, 2016; 
McKinley et al., 2015; Jennett et al., 2016). 
 
The world’s largest online citizen science platform, Zooniverse (www.zooniverse.org), was 
created in 2007 with the goal of engaging volunteers in data classification tasks that would 
otherwise exceed the researchers’ own capacity (Fortson et al., 2012; Prather et al., 2013; Watson 
& Floridi, 2018; Trouille et al. 2019). Data object annotation is decomposed into simple tasks and 
crowdsourced to volunteers (Rosser & Wiggins, 2018). While the Zooniverse platform was 
originally developed for astronomy projects, through the launch of the Zooniverse Project Builder 
in 2015 (www.zooniverse.org/lab) it has come to host a broad range of projects in biology, earth 
sciences, art, history, and social sciences (Simpson et al., 2014, Spiers et al., 2019). 
 
The original Snapshot Safari initiative, Snapshot Serengeti (www.snapshotserengeti.org), was 
launched in 2012 as the first Zooniverse camera trap project. As such, Snapshot Serengeti was 
pivotal in developing the camera trap classifying interface and backend that are now used by >50 
Zooniverse projects (Data Availability [2a]). In this system, volunteers view camera trap capture 
events along with a list of possible species, which can be filtered based on morphological traits 
such as coat color or horn shape (Figure 1). Instructional tools including tutorials, field guides, 
and FAQs help volunteers identify animals in the camera trap images. After selecting a possible 
species classification, users are presented with pictures of that species from various angles, a 
detailed description of the species’ characteristics, and comparisons to ‘commonly confused with’ 
species to assist in verifying the classification. After identification of all species in the image, 
users count the number of individuals, classify the animals’ behavior, and indicate the 
presence/absence of juveniles and the presence of horns in sexually dimorphic antelope (Figure 
1). Captures are circulated to multiple users (originally, 10-25 volunteers for each image 
containing animals, 5-10 volunteers for ‘empty’ images) and resulting data are aggregated based 
on the plurality of classifications to form a dataset that is 98% accurate compared to expert 
classifications (see Swanson et al. 2015, 2016a for further information). 
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Figure 1. A typical Snapshot Safari project interface on the Zooniverse: the camera trap image 

is presented on the left-hand side and a species list on the right. Volunteers are able to select 
species directly or use the ‘filter’ tools (highlighted in orange; expanded in orange inset) to 

narrow down the selection. Once a species is chosen, additional information about the species 
and the opportunity to count individuals and tag behaviors and other additional annotations is 

presented (purple inset). 

3.1 Benefits of citizen science for processing camera trap imagery 
The first three years of Snapshot Serengeti camera trap data were classified by over 30,000 
volunteers who collectively donated a total of ~14.6 years of 40-hour-a-week effort (Swanson et 
al., 2015). This engagement has continued to grow: >138,000 users worldwide have contributed 
annotations on more than nine million images generated by Snapshot Safari projects between 
2013-2020.  
 
Beyond the benefits provided to researchers, the accessible nature of online citizen science 
enables novel forms of science education and outreach (Dickinson & Bonney, 2012; Shirk et al., 
2012). We use the Snapshot Safari platform as a tool to disseminate information on African 
wildlife, share ongoing research and conservation efforts, and provide non-scientists with an 
intimate understanding of the scientific process. Participants are encouraged to interact with 
project researchers remotely via discussion boards and social media or in person at citizen science 
events. We have developed educational materials, including activities, multimedia, and course 
curricula, based on the Snapshot Safari platform to teach ecological principles and to engage 
students in authentic research experiences (Data Availability [1a-c]). 
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3.2 Challenges in the application of citizen science 
Volunteers value learning, a sense of purpose, and the connections they develop with the research 
team (Rotman et al., 2012). As such, the researchers need to actively interact with volunteers to 
retain levels of participation sufficient to process data in the required timeframe (Cox et al., 
2015). To draw in new volunteers and, of particular value, to retain experienced users, it is 
important to create and maintain engaging and informative websites, discussion boards, and 
social media platforms (Rotman et al. 2012; Reed et al., 2013). Project researchers can maximize 
participation by communicating frequently with volunteers and upticks in classifications are 
commonly observed after targeted engagement efforts. For example, classification rate 
approximately doubled after researchers conducted interactive educational webinars (42,639 
classifications the day before vs. 94,625 the day after; April 2020) and podcast interviews in 
which volunteer contributions were explicitly highlighted (6,789 vs. 12,460; September 2020). 
We also found it highly beneficial to have a strong moderator corps that can amplify messages 
from the research team to volunteers and are knowledgeable enough to assist others with 
classifications. Overall, skills such as social media management, website design, and public 
communication are key for running a successful online citizen science project and the amount of 
effort that it takes to manage these platforms, particularly for the Snapshot Safari team which 
hosts dozens of projects, is not inconsequential.  
 
Another complication is ensuring that ‘sensitive’ data are not viewed by the public. Snapshot 
Safari monitors certain protected areas that are subject to high rates of poaching and, as such, 
efforts are made to reduce the online circulation of images capturing wildlife crime and highly 
endangered species (e.g., rhinoceros, pangolin). Humans (e.g., protected area staff, tourists) are 
occasionally captured on camera and we act to remove these images from our platforms as 
quickly as possible. Although metadata such as geographic details are hidden from volunteers, 
minimizing exposure of these images reduces the possibility that contextual information from the 
photos could be used for unethical reasons. 
 
When Snapshot Serengeti was released, it was the first project of its kind; over the last decade, 
the number of online camera trap citizen science projects has proliferated exponentially. There 
are now dozens of camera trap projects on the Zooniverse, with additional projects appearing on 
other platforms (e.g., eMammal www.emammal.si.edu, SciStarter www.scistarter.org, 
MammalWeb www.mammalweb.org). While participants continue to contribute millions of 
classifications every year, the available volunteer-base has grown more slowly than the number of 
projects relying on citizen science (Willi et al., 2019). It is increasingly challenging to recruit 
sufficient effort to process data, leading to substantial delays between data collection and analysis 
for real-world application. As these data are vital for practitioners who need to track population 
demographics, monitor threatened species, and assess outcomes of existing programs, the longer 
it takes for data to be processed, the less value they have for active, ongoing conservation 
initiatives. 
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4. SECOND HURDLE: EXPEDITING DATA PROCESSING WITH ARTIFICIAL 
INTELLIGENCE 

We next investigated the use of artificial intelligence (AI) for camera trap image processing. New 
advances in deep learning, a sub-field of AI, allow computers to perform complex tasks with near 
human-level accuracy (Russakovsky et al., 2015). Particularly, convolutional neural networks 
(CNNs) have high accuracy in visual tasks such as image classification and object recognition, 
making them a powerful tool for ecology and conservation projects that rely on camera trapping 
(Norouzzadeh et al., 2018). 
 
CNNs evaluate image data in a hierarchical fashion similar to the way mammalian brains process 
visual information (Eickenberg et al., 2017). They are trained to identify objects of interest by 
learning how to associate raw inputs (i.e., pixel values) to labelled image data (for illustrations on 
how CNNs identify animal species, see Miao et al., 2019). CNNs are a powerful class of models 
because they are able to learn and extract complex visual features without direct supervision of a 
human expert. However, learning to associate specific features with objects of interest - in this 
case, animal species - requires a substantial amount of labelled data. For example, the ImageNet 
computer vision challenge dataset contains 1,000 images per object class (Russakovsky, 2015). 
Real-world datasets are often highly imbalanced, dominated by images of common objects with 
few examples of rarer classes. As such, rare objects (species) are more difficult for algorithms to 
recognize (see results and discussion in Norouzzadeh, 2018). Camera trap images present 
additional challenges in the application of deep learning as animals in the images can be difficult 
to discern or distorted by occlusion, unusual perspectives, camouflage, and more (Beery, 2018).  
 
When Snapshot Serengeti went online in 2012, CNNs had just demonstrated their superiority to 
other algorithms by significantly reducing error rates on image classification tasks (Krizhevsky, 
2012). At that time, however, we lacked the necessary volume of labelled data to train a wildlife 
identification algorithm for camera trap images. Over the following years, the subsequent 
contributions of citizen scientists generated an unprecedented dataset of several million labelled 
images of 48 animal species (Swanson et al., 2015). This unique resource enabled ML researchers 
to significantly improve automated animal recognition (Chen et al., 2014, Villa et al., 2017, 
Tabak et al., 2018), reaching up to 96% accuracy (Norouzzadeh et al., 2018). 

4.1 AI for camera trap image processing 
A typical Snapshot Safari survey is composed of ~80% empty capture events; this is a common 
camera trapping issue, as moving vegetation can trigger a camera’s sensor and lead to long 
sequences of images containing only shrubs or grass (Green et al. 2020). Removing empty images 
is tedious and time-consuming for humans but can be quickly and efficiently accomplished by AI. 
We decomposed the classification task into two components: first, eliminating empty images 
(e.g., misfires that do not contain animals) and second, extracting several types of data from 
images of wildlife. This separation required us to train two separate models, the first which 
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identifies wildlife presence (‘Empty or Not’) and the second (‘Species’) that extracts information 
from capture events flagged as non-empty. This approach is closely aligned with the citizen 
science workflow and has additional advantages as discussed in Willi et al. (2019) and 
Norouzzadeh et al. (2018) (Data Availability [2b]).  
 
We trained our models on a dataset of 3.66 million labelled capture events on 85 species from 
nine Snapshot Safari surveys (three in Tanzania, one in Mozambique, and five in South Africa; 
Data Availability [3]) and images collected across South Africa by a similar camera trapping 
project, Camera CATalogue (www.panthera.org/cameracatalogue). While there was large overlap 
in species community composition across these surveys, including data from a diverse array of 
sites allowed us to generate an algorithm that could perform across substantially different 
environments (e.g., image backgrounds; Beery, 2018). 
 
Our modelling approach is based on the description in Willi et al. (2019), with a few notable 
changes. We used a more complex model architecture for the Species model (Chollet, 2017) and 
added additional outputs that classify animal behaviors, detect the presence of young animals, and 
estimate animal counts. While the Empty or Not model architecture remains unchanged, we 
increased the input image resolution from 224x224 to 448x448 pixels to better detect small or 
obscured animals. The most significant difference is the performance improvements resulting 
from using a substantially larger and more diverse training dataset (~3x larger than that used in 
Willi et al., 2019). Each model outputs a probability distribution over all objects it was trained to 
recognize, with the sum over all probabilities (over all classes) on any given image equaling 100. 
The class with the highest probability is considered the model's classification for that image and 
the associated probability value can be interpreted as the model’s confidence in its classification. 
With appropriate models, confidence thresholding (i.e., ignoring model classifications below a 
certain confidence value) can result in accurate predictions on a large subset of a dataset and is an 
effective way to identify images that need manual review (see Norouzzadeh et al., 2018; Willi et 
al., 2019).  
 
Both models were evaluated on several test datasets which were not used during model training. 
One dataset was composed of capture events from sites that the model was trained on (in-sample) 
and three datasets were from new sites (out-of-sample). The latter provide a more realistic 
estimate of model performance if applied to new sites. The following figures refer to the much 
larger in-sample dataset.  
 
The Empty or Not model achieved an overall accuracy of 96.0% at identifying empty images. 
Accuracy rose to 99.5% on images where the AI indicated greater than 95.0% (‘high’) 
confidence. The share of such high confidence images in the test dataset is 74.4%, meaning the 
accuracy of that part of the dataset can be accepted without additional input from researchers, 
while the remaining 25.6% may need to be reviewed.  
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The Species model extracts annotations comparable to those supplied by citizen scientists, 
specifically, species identity, count of animals, behavior (e.g., resting, standing, moving, eating, 
interacting), and presence of offspring. This model performed well on the species category, 
returning accurate responses of 89.3% across the board and 97.2% accuracy on high confidence 
images, roughly equal to the volunteers’ aggregated accuracy of 97.9% (Swanson et al., 2016). 
Identification of behaviors and juveniles achieved 89.22% overall and count accuracy varies by 
binned count category, with low (count = 1, accuracy = 94.7%) and high (count = 11-50, 
accuracy = 89.0%) values achieving particularly high accuracy. See Supplemental Materials for 
breakdown of model accuracy and recall by attribute.  

4.2 AI application issues 
AI presents a substantial advance in how ecologists manage Big Data by significantly reducing 
the classification workload, but AI is not yet a panacea for camera trappers. In our project, AI 
algorithms achieve high accuracy on empty images and perform adequately on species 
identification if trained on large labelled image libraries. However, these models have yet to 
achieve confident predictions for rare species with few labelled images, images collected from 
areas unknown to the model, and, due to image-level classification of the training set (still the 
prevailing form of image data classification on the Zooniverse), multiple species in a single 
image or counts of large groups (Figure 2A-E). Every additional variable used by ecologists to 
assess abundance, species interactions, or demographic parameters (e.g., count, behavior, age, 
sex) introduces new layers of complexity in training a model (Figure 2F-I). This could have 
conservation consequences if AI fails to identify the presence of new, rare, or endangered species 
or if AI does not annotate information at a resolution necessary to develop accurate predictive 
models of wildlife responses to management interventions or environmental change (Wearn et al., 
2019). Lastly, AI cannot yet compete with the human ability to recognize and flag intriguing 
interactions or behaviors which may lead to unexpected scientific discoveries. 
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Figure 2. Examples of camera trap images that are difficult for our current ML algorithm to 
annotate: (A) rare species - honey badger compose less than 0.03% of the overall Snapshot 
Serengeti dataset; (B, C) different backgrounds - the savanna habitat in Serengeti National 
Park, Tanzania, differs significantly from the bushveldt habitat of Kruger National Park, 

South Africa; (D) multiple species - wildebeest and zebra commonly herd together and can 
consequently be captured in the same images; (E) large counts - animals in groups of  >10 are 
difficult for humans and computers to resolve. Furthermore, additional image attributes are 

collected by human volunteers that our algorithm struggles to predict with reasonable 
accuracy: (F, G) behavior - activities such as ‘feeding’ can look different across species; (G, 
H) age and sex - extracting data on demographic parameters is important for understanding 

population dynamics. 
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5. INTEGRATION OF AI AND CROWDSOURCING TO OVERCOME 
CURRENT CHALLENGES IN DATA PROCESSING 

Humans have the pattern recognition capability to easily extract data, but it can become difficult 
to marshal enough volunteer effort to return information in a timely manner. In Snapshot Safari, 
issues still remain with using AI alone for data processing in terms of model accuracy, the types 
of data that can currently be extracted, and the loss of broader outreach benefits from engaging 
volunteers in authentic research experiences. The combination of ML and citizen science offers 
numerous advantages over using either technique independently (Green et al. 2020). Foremost is 
drastically improved classification rates without sacrificing accuracy or the potential to discover 
new, unanticipated information (Branson, 2017; Topol et al., 2019). Secondly, human input and 
verification of ML classifications is used to iteratively retrain the algorithms, enabling us to 
further advance ML accuracy and capability to handle difficult classification tasks. Furthermore, 
we continue to involve the public in authentic research, a mutually beneficial relationship that 
serves to increase scientific literacy and raise awareness of pressing conservation issues. 

5.1 Crowd AI for classifying camera trap images 
In the integrated Snapshot Safari data pipeline (Figure 3), the task of identifying empty images is 
primarily delegated to the ML algorithms, allowing us to concentrate volunteer effort on 
annotation tasks where the algorithm is unable to generate confident predictions (e.g., captures 
that contain data-deficient species, captures that are of poor quality due to glare, obstructions, or 
only portions of the animal are in view). Throughout this process, human classifications confirm 
and expand on the computer annotations. This ensures that important discoveries related to 
behavior, species interactions, and novel species are not lost due to current limitations of the AI. 
Citizen scientists’ efforts then provide new labels for iteratively training the classifier between 
data batches to improve the accuracy of the first phase.   
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Figure 3. Workflow outline of the integrated ‘Crowd AI’ data pipeline. 
 
This integration is made possible by a key Zooniverse functionality, the ‘Caesar’ decision engine, 
which allows us to determine whether to keep circulating an image for additional human 
annotation by comparing incoming volunteer classifications to ML-generated predictions (Data 
Availability [2a]; Fortson et al. 2018). With Caesar, researchers can set logical ‘retirement rules’ 
for a capture event (i.e., when we are confident that we can remove the capture event from online 
circulation having achieved highly accurate annotations) based on the ML predictions, the 
number of volunteers who have annotated the event, and the level of agreement among ML and 
volunteers. While Type II errors (i.e., model identifies an empty image as containing an animal) 
result in a slight increase in human effort, Type I errors (i.e., model identifies a wildlife-
containing image as empty) can lead to potentially costly data loss. Although the Empty or Not 
CNN has a high degree of accuracy, we have adopted a conservative set of rules to ensure all 
images containing wildlife are properly identified (see Supplemental Materials for rules and 
background on their development and justification).  
 
Images identified as non-empty are then moved to the Species workflow to annotate the identity, 
counts, behaviors, age, and sex of animals in the capture. When using citizen science alone, 
capture events were circulated to an average of 26 users to achieve an overall 98.6% accuracy on 
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animal identifications and 75.2% accuracy on counts (Swanson et al., 2016a). With Crowd AI, we 
have reduced the number of human volunteers needed by half to produce comparable levels of 
accuracy (for example, average users to retire captures before/after implementing Crowd AI: 
Snapshot APNR 18.9/8.9; Snapshot Serengeti 16.0/8.1). As in the preceding workflow, dynamic 
retirement rules implemented through Caesar allow us to retire images sooner that exhibit high 
agreement among volunteers and/or between human and ML annotations. Distinct rule sets are 
applied to sensitive (i.e., humans or threatened species), common, and rare animals, allowing us 
to move quickly though the classification process for species the algorithm performs well on 
while ensuring maximum volunteer input on difficult images and minimum online circulation for 
sensitive species (see Supplemental Materials). The labelled images for rare species and for 
images initially mis-classified by the computer are then used to retrain the ML model to improve 
accuracy on future data. 
 
The Zooniverse continues to develop new tools for integrating ML and citizen science 
classifications (Data Availability [2a]; Fortson et al. 2018, Trouille et al. 2019). In addition to 
Caesar, we have been able to use the Zooniverse’s mobile application to rapidly process high 
volumes of images on the order of several million annually. The mobile app is ideal for binary 
classifications like the Empty or Not workflow, as volunteers are able to swipe left or right to 
indicate whether a capture is empty or contains wildlife. This improved accessibility on mobile 
devices expands the way that we interact with volunteers and the way volunteers engage with us.  
 
Depending on the size of the dataset, removal of empty images can take as little as ~3-7 days, 
while the more complex species identification task can be completed in 4-6 weeks for small 
protected areas (~20 cameras) and several months for large national parks (~150-200 cameras). 
Classification times for the flagship Snapshot Serengeti project (currently 187 camera traps) have 
been significantly reduced with Crowd AI: prior to implementing the combined workflow, a 
batch of data collected over six months in the field took 452 days (~15 months) to process, while 
a similarly-sized batch with integrated ML predictions was processed in less than half the time 
(209 days or ~7 months).  

6. CROWD AI: UNLOCKING NEW OPPORTUNITIES IN ECOLOGICAL 
RESEARCH 

The Snapshot Safari Crowd AI pipeline is constantly being refined as new labelled image datasets 
become available. In our current system, volunteers are used to confirm computer classifications 
for empty images and identities of common species. The next challenge is improving our models 
to generate more accurate predictions for complex annotation tasks, such as counting animals, 
identifying multiple species in the same image, and classifying animal behavior (Figure 2). With 
improved classification models, the majority of volunteer effort can be directed towards tackling 
the much smaller percentage of the data that requires advanced human pattern recognition skills.  
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6.1 Current challenges in the use of Crowd AI 
Determining when conservation efforts need to be implemented and tracking their success 
requires a precise understanding of animal population sizes. Counts of animals from camera trap 
images can be used to generate abundance estimates (e.g., Morellet et al. 2007, Palmer et al. 
2018), but Snapshot Safari citizen science and, consequently ML, annotations are currently 
binned into categories (‘11-50’, ‘51+’) too broad to accurately calculate population size. One 
issue is that certain species travel in enormous herds numbering hundreds or thousands of 
individuals, making it nearly impossible for humans to distinguish and count each animal (Figure 
2E). Additionally, some volunteers only count animals near the camera (i.e., those that triggered 
the capture), while others attempt to also count animals in the far distance (i.e., those that would 
not have otherwise been photographed), creating a bimodal distribution that further complicates 
our ability to train an accurate counting model.  
 
Due to the image-level labeling of the camera trap captures, another drawback with our current 
approach is that our AI cannot identify more than one species per capture event. While <2% of 
Snapshot Safari images overall contain multiple species (Norouddezzah et al., 2018; Willi et al., 
2019; Figure 2D), these images contain valuable information about species interactions such as 
mutualisms, facilitation, competition, and predator-prey relationships (e.g., Palmer et al., 2017; 
Beaudrot et al., 2020).  
 
At this stage, neither citizen scientists nor machine learning algorithms provide robust data on 
additional image attributes such as animal behavior. This issue is driven by lack of human 
agreement (and therefore, labelling) on what behavioral performance looks like within and across 
species. For example, to different volunteers, ‘moving’ could be interpreted as an animal going 
from place to place or a stationary animal moving parts of its body (e.g., tail swinging, 
grooming). Significantly different-looking actions can be associated with the same behavioral 
label across species: a wildebeest grazing on grass, a lion eating a carcass, and a bird catching 
insects would all be labelled as ‘feeding’ (Figure 2F-G). The problem is exacerbated, as with 
species classification, by image-level labeling of behaviors, possibility for multiple behaviors to 
be tagged in a single image, and highly imbalanced examples of each behavior. Currently, the 
best classifiers are only 76.2% accurate compared to human classifications (Norouzzadeh et al., 
2018). 

6.2 On-going advances in Crowd AI 
On-going technological advances allow for increasingly sophisticated forms of data extraction 
and Crowd AI integration through our hybrid approach and are an active area of investigation.  
 
CNNs with object detection capabilities offer a potential solution to improve count estimates, 
handle images containing multiple species, and address the issue of classifying complex 
behavioral data. While image classification models by definition only predict the presence of one 
species for a given image (i.e., are trained on and provide labels at the image-level), object 
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detector models explicitly identify each individual animal in an image and output its location and 
species class (Beery et al., 2018; Schneider et. al, 2019; Parham et al., 2018; Data Availability 
[2c]). Object detection models are trained with localized annotations which are typically tight 
rectangular boxes (‘bounding boxes’) around each object of interest (‘Data Availability [3]). 
Bounding boxes additionally allow for developing standardized cut-off points to determine which 
individuals to consider a valid observation. Counts could be limited to those animals that exceed a 
minimum detection size limit, thus preventing the inclusion of background animals that would 
never have been captured in the absence of a foreground animal triggering the camera trap. The 
size limit would likely vary by species as a distant elephant will be larger than a distant gazelle.  
 
A prerequisite for training such models is collection of new forms of citizen science data. Most 
pressingly, we require specialized workflows to annotate animals within localized bounding-
boxes within camera trap images. We also are working towards enhancing the specificity of 
volunteer responses to complex image annotation questions. One solution for standardizing 
behavioral annotation, for example, is to train volunteers using ethograms (a method of 
systematically cataloging types of behavior) for particular species of research or conservation 
interest. This would then allow for improved training of species-behavior-specific AI. Designing 
these novel workflows is an area of on-going development by Snapshot Safari in collaboration 
with the Zooniverse and the Microsoft AI for Earth team. 
 
The Zooniverse continues to innovate advances to better facilitate the dynamic integration of 
machine learning with volunteer classifications. One area of improvement is in bringing to bear 
differing levels of expertise within the volunteer corps. For example, in the ‘leveling up’ strategy 
employed by the ‘Gravity Spy’ citizen science project (Zevin et al. 2017), volunteers label ‘easy’ 
images first and as their experience and expertise grows, access subsequent ‘levels’ with 
progressively harder images. Using this infrastructure, camera trap projects could present to 
qualified individuals sets of images that need more detailed classification. Gravity Spy has also 
demonstrated that this leveling up mechanism provides a way for citizen scientists to make 
serendipitous discoveries: at each level volunteers have the opportunity to flag something as 
‘odd’ or ‘not known’, which then promotes that image to the next level. 

6.3 Zooming out: Applying lessons from the Snapshot Safari case study 
to other monitoring efforts 

Our work with Snapshot Safari demonstrates that combining citizen science and ML capacities in 
an integrated workflow allows us to rapidly generate highly accurate ecological Big Data from 
camera trap surveys. We have been able to break new ground in citizen science, AI, and Crowd 
AI due to the exceptional scale of our projects, and we have made the results of our efforts freely 
available to facilitate the work of other researchers who may lack sufficient resources, data, or 
capacity to develop their own classification pipelines (Data Availability [2a-c, 3]). Our pipeline 
will continue to improve through iterative feedback between human volunteers and new 
algorithms.  
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The foundations laid by Snapshot Safari have opened up new frontiers in how ecologists can 
monitor, understand, and protect our natural world (Green et al. 2020). Long-term, large-scale 
camera trap monitoring programs have proliferated over the last few years, enabling direct 
comparison of ecological and anthropogenic drivers of community dynamics at regional, 
continental, or even global scales (Rich et al., 2017; Steenweg et al., 2017). Other programs 
currently generating large camera trap image datasets that benefit from citizen science, AI, or 
Crowd AI include Snapshot USA (www.emammal.si.edu/snapshot-usa), Tropical Ecology 
Assessment and Monitoring (TEAM; www.wildlifeinsights.org/team-network), and the Zoological 
Society of London (www.cloud.google.com/customers/zsl). Many efforts exist to synthesize and 
process existing camera trap datasets, such as eMammal, MammalWeb, Wildlife Insights 
(www.wildlifeinsights.org), and the Global Biodiversity Information Facility (www.gbif.org). 
 
Our project is not alone in integrating citizen science and machine learning capabilities for 
camera trap image processing, though much ongoing work advancing AI and Crowd AI relies on 
the labelled image libraries generated by Snapshot Safari (Data Availability [3]). Collaborations 
include those led by Microsoft’s AI for Earth initiative (www.microsoft.com/en-us/ai/ai-for-
earth) and the American Museum of Natural History 
(www.biodiversityinformatics.amnh.org/ml4conservation/animal-detection-network/ 
species-identification-localization). More broadly, the pairing of citizen science and machine 
learning is now being used to process or collect other types of ecological data (e.g., WildMe 
www.wildme.org and iNaturalist www.inaturalist.org for volunteer-gathered wildlife images; 
Satellites over Seals for satellite imagery, LaRue et al., 2020; ‘biophony’ audio data, Sueuer et 
al., 2019).  
 
Rapid access to these data presents unprecedented opportunities for us to discover fundamental 
information on the structuring of wildlife communities and to explore and evaluate new measures 
for preserving biodiversity and community functioning. The rate and scale of data collection and 
now, data processing, allows us to use this information to make near-real time decisions that can 
guide scientifically-driven conservation decisions. Modern conservation requires modern tools, 
and our new capacity to close the Big Data analysis gap is better enabling us to take on new and 
increasingly urgent environmental challenges. 

DATA AVAILABILITY 
[1] Educational materials:  

- [1a] Middle school-level activities and multimedia: https://doi.org/10.13020/5r00-8c56  
- [1b] High school-level lesson plans and multimedia: 

https://classroom.zooniverse.org/#/wildcam-gorongosa-lab 
- [1c] Undergraduate-level lab materials for conducting authentic research inquiries: 

https://doi.org/10.24918/cs.2020.49 (Palmer et al. 2020) 
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[2] Code repositories: 

- [2a] Zooniverse’s code repository, including the Panoptes platform and Caesar decision 
engine: https://github.com/zooniverse  

- [2b] CNN for classifying camera trap images (code and models, updated from Willi et al., 
2019): https://github.com/marco-willi/camera-trap-classifier 

- [2c] Microsoft’s code repository for training, running, and evaluating detectors and 
classifiers for camera trap images, developed in part using Snapshot Safari image data 
(maintained by AI for Earth): https://github.com/microsoft/CameraTraps  
 

[3] Camera trap data: 
- Labelled Image Library of Alexandria - Biology and Conservation (LILA-BC) 

repository, containing camera trap datasets from Snapshot Safari projects including data 
collected in Serengeti National Park (Tanzania), Camdeboo National Park, Karoo 
National Park, Kgalagadi Transfrontier Park, Kruger National Park, and Mountain Zebra 
National Park (South Africa) and the Enonkishu Conservancy (Kenya). New data is 
uploaded as classifications are provided by citizen scientists (maintained by Microsoft’s 
AI for Earth): http://lila.science/datasets 
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